搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn-In-Cu共掺杂优化SnTe基材料的热电性能

黄青松 段波 陈刚 叶泽昌 李江 李国栋 翟鹏程

引用本文:
Citation:

Mn-In-Cu共掺杂优化SnTe基材料的热电性能

黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程

Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials

Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng
PDF
HTML
导出引用
  • 无铅硫族化合物SnTe因与PbTe具有相似的晶体结构和能带结构, 近些年受到广泛关注, 然而其较低的Seebeck系数、本征高Sn空位浓度以及高的热导率导致本征热电性能较差. 本文通过高温高压结合热压烧结的方式制备了Mn, In, Cu共掺杂的SnTe基热电材料. Mn带来的能带收敛和In引入的共振能级的共同作用提高了材料整个温度范围内的Seebeck系数, 优化了材料的功率因子. 此外, Mn合金化带来的点缺陷和Cu引入的间隙缺陷增强了声子散射, 有效降低了材料的晶格热导率. 多种策略结合下材料的电性能与热性能同时得到优化, 其中Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品在873 K时获得最大zT ≈ 1.45, 300—873 K的平均zT达到0.76. 多策略协同调控SnTe基热电材料时仍能较好地保持单策略所发挥的优异特性, 这为进一步改进SnTe基热电材料性能提供了可能.
    Lead-free chalcogenide SnTe has a similar crystal structure and energy band structure to high performance thermoelectric material PbTe, which has been widely concerned in recent years. However, due to its low Seebeck coefficient, high intrinsic Sn vacancy concentration and high thermal conductivity, its intrinsic thermoelectric performance is poor. In this study, Mn-In-Cu co-doping SnTe-based thermoelectric materials are prepared by hot pressing sintering at high-temperature and high-pressure. Indium (In) doping brings the resonant level in SnTe and increases the density of states which greatly improves Seebeck coefficient at room temperature; the Seebeck coefficient of Sn1.04In0.01Te(Cu2Te)0.05 reaches 70 μV·K–1 at room temperature. With adding manganese (Mn), the Seebeck coefficient at room temperature is well preserved, indicating that Mn doping has little effect on the resonant level brought by In doping. In addition, due to the band convergence brought by Mn doping, the high temperature Seebeck coefficient of the material is improved, the maximum Seebeck coefficient reaches 215 μV·K–1 for the sample with 17% Mn doping amount at 873 K. Owing to the combination of band convergence and resonant level, the Seebeck coefficient of the whole temperature range of the material increases, the power factor of the material is also greatly optimized, and all samples have a power factor of more than 1.0 mW·m–1·K–2 at room temperature. On the other hand, the point defects brought by Mn alloying and the interstitial defects introduced by copper (Cu) enhance the phonon scattering and effectively reduce the lattice thermal conductivity of the material, the lattice thermal conductivity decreases to 0.68 W·m–1·K–1 at 873 K. The electrical and thermal properties of the materials are optimized simultaneously under the combination of various strategies, the peak zT ≈ 1.45 is obtained at 873 K in the p-type Sn0.89Mn0.15In0.01Te(Cu2Te)0.05 sample and the average zT of 300–873 K reaches 0.76. In the process of multi-strategy coordinated regulation of SnTe-based thermoelectric materials, the excellent properties of single strategy can be well maintained, which provides a possibility for further improving the performance of SnTe-based thermoelectric materials.
      通信作者: 段波, duanboabc@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772231, 51972253)和中央高校基本科研业务费专项资金(批准号: 2020IB001, 2020IB013)资助的课题
      Corresponding author: Duan Bo, duanboabc@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772231, 51972253) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2020IB001, 2020IB013)
    [1]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [2]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    Brebrick R F 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [5]

    Rogers L M 1968 J. Phys. D: Appl. Phys. 1 845Google Scholar

    [6]

    Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G, Zhao L D 2015 Energy Environ. Sci. 8 3298Google Scholar

    [7]

    Banik A, Shenoy U S, Anand S, Waghmare U V, Biswas K 2015 Chem. Mater. 27 581Google Scholar

    [8]

    Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 Energy Environ. Sci. 8 267Google Scholar

    [9]

    Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006Google Scholar

    [10]

    Tan X J, Shao H Z, He J, Liu G Q, Xu J T, Jiang J, Jiang H C 2016 Phys. Chem. Chem. Phys. 18 7141Google Scholar

    [11]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13261Google Scholar

    [12]

    Ma Z, Lei J, Zhang D, Wang C, Wang J, Cheng Z, Wang Y 2019 ACS Appl. Mater. Interfaces 11 33792Google Scholar

    [13]

    Bhat D K, Shenoy U S 2017 J. Phys. Chem. C 121 7123Google Scholar

    [14]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [15]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [16]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [17]

    Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B 2016 Adv. Electron. Mater. 2 1600019Google Scholar

    [18]

    Hu L, Zhang Y, Wu H, Li J, Li Y, McKenna M, He J, Liu F, Pennycook S J, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [19]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [20]

    Tang J, Yao Z, Wu Y, Lin S, Xiong F, Li W, Chen Y, Zhu T, Pei Y 2020 Mater. Today Phys. 15 100247Google Scholar

    [21]

    Xu X, Cui J, Yu Y, Zhu B, Huang Y, Xie L, Wu D, He J 2020 Energy Environ. Sci. 13 5135Google Scholar

    [22]

    Blachnik R, Igel R 1974 Z. Naturforsch., B: Chem. Sci. 29 625Google Scholar

    [23]

    Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y 2017 Adv. Mater. 29 1605887Google Scholar

    [24]

    Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y 2015 J. Materiomics 1 307Google Scholar

    [25]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276Google Scholar

    [26]

    Zak A K, Majid A W H, Abrishami M E, Yousefi R 2011 Solid State Sci. 13 251Google Scholar

    [27]

    Sarker P, Sen S K, Mia M N H, Pervez M F, Mortuza A A, Hossain S, Mortuza M F, Ali M H, Nur S, Kabir H, Chowdhury M A M 2021 Ceram. Int. 47 3626Google Scholar

    [28]

    Guo F, Cui B, Liu Y, Meng X, Cao J, Zhang Y, He R, Liu W, Wu H, Pennycook S J, Cai W, Sui J 2018 Small 14 1802615Google Scholar

    [29]

    Acharya S, Pandey J, Soni A 2016 Appl. Phys. Lett. 109 133904Google Scholar

    [30]

    Li S M, Li J Q, Yang L, Liu F S, Ao W Q, Li Y 2016 Mater. Des. 108 51Google Scholar

    [31]

    Uher C 2016 Materials Aspect of Thermoelectricity (Vol. 1) (Boca Raton: CRC Press) p8

    [32]

    傅铁铮, 沈家骏, 忻佳展, 朱铁军 2019 硅酸盐学报 47 1467

    Fu T Z, Shen J J, Qi J Z, Zhu T J 2019 J. Chin. Ceram. Soc. 47 1467

    [33]

    Brebrick R F, Strauss A J 1963 Phys. Rev. 131 104Google Scholar

    [34]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

    [35]

    Shenoy U S, Bhat D K 2020 J. Mater. Chem. C 8 2036Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041516Google Scholar

    [37]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [38]

    Hussain T, Li X, Danish M H, Rehman M U, Zhang J, Li D, Chen G, Tang G 2020 Nano Energy 73 104832Google Scholar

    [39]

    Li W, He Q Y, Chen J F, Pan Z L, Wang T 2014 Chem. Phys. Lett. 616-617 196Google Scholar

    [40]

    Guo F, Wu H, Zhu J, Yao H, Zhang Y, Cui B, Zhang Q, Yu B, Pennycook S J, Cai W, Chu C W, Sui J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 21998Google Scholar

    [41]

    Wang H, Hwang J, Zhang C, Wang T, Su W, Kim H, Kim J, Zhai J, Wang X, Park H, Kim W, Wang C 2017 J. Mater. Chem. A 5 14165Google Scholar

    [42]

    Tang J, Yao Z, Chen Z, Lin S, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2019 Mater. Today Phys. 9 100091Google Scholar

    [43]

    Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J, Zhao L D 2019 J. Alloys Compd. 773 571Google Scholar

  • 图 1  Sn1.04–xMnxIn0.01Te (Cu2Te)0.05 (x = 0—0.17)的(a) XRD图谱, (b) 57.5°—60° XRD图谱局部放大图, (c) 晶格常数随Mn掺杂量x的变化

    Fig. 1.  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 samples (x = 0–0.17): (a) XRD patterns; (b) enlarged view between 57.5°–60°; (c) lattice parameter as a function of x

    图 2  Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品的扫描电子显微镜图像

    Fig. 2.  Scanning electron microscope images of the Sn0.89Mn0.15In0.01Te(Cu2Te)0.05 sample.

    图 3  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05(x = 0—0.17)样品的(a) 电导率随温度的变化, (b) 室温下载流子浓度和迁移率随x的变化, (c) Seebeck系数随温度的变化, (d) 室温下Seebeck系数与载流子浓度关系以及和相关研究的对比图[11,17,30-32], (e) 室温下有效质量对比图, (f) 功率因子随温度的变化

    Fig. 3.  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) samples: (a) Electrical conductivities as a function of temperature; (b) carrier concentration and mobility as a function of x at room temperature; (c) Seebeck coefficients as a function of temperature; (d) the relationship between Seebeck coefficient and carrier concentration at room temperature and comparison with the correlation studies[11,17,30-32]; (e) effective mass comparison at room temperature; (f) power factor as a function of temperature.

    图 4  Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0—0.17)样品的(a) 总热导率、(b) 洛伦兹数、(c) 载流子热导率、(d) 晶格热导率随温度的变化

    Fig. 4.  Thermoelectric properties of Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) as a function of temperature: (a) Total thermal conductivity; (b) Lorenz number; (c) carrier thermal conductivity; (d) lattice thermal conductivity.

    图 5  Sn1.04In0.01Te(Cu2Te)0.05样品和Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品的(a) 晶格热导率的实验值与拟合结果对比, (b) 晶格热导率与1000/T的函数关系图

    Fig. 5.  (a) Experimental and fitting results of lattice thermal conductivity for Sn1.04In0.01Te(Cu2Te)0.05 and Sn0.89Mn0.15In0.01Te(Cu2Te)0.05; (b) lattice thermal conductivity as a function of 1000/T for Sn1.04In0.01Te(Cu2Te)0.05 and Sn0.89Mn0.15In0.01Te(Cu2Te)0.05.

    图 6  (a) Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0—0.17)样品的zT值随温度的变化; (b) 不同掺杂样品300—873 K的zTave[11,19,23,30,32,40-43]

    Fig. 6.  (a) Temperature dependent zT for Sn1.04–xMnxIn0.01Te(Cu2Te)0.05 (x = 0–0.17) samples; (b) comparison of zTave with a temperature gradient of 300–873 K[11,19,23,30,32,40-43].

    Baidu
  • [1]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [2]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [4]

    Brebrick R F 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [5]

    Rogers L M 1968 J. Phys. D: Appl. Phys. 1 845Google Scholar

    [6]

    Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis M G, Zhao L D 2015 Energy Environ. Sci. 8 3298Google Scholar

    [7]

    Banik A, Shenoy U S, Anand S, Waghmare U V, Biswas K 2015 Chem. Mater. 27 581Google Scholar

    [8]

    Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 Energy Environ. Sci. 8 267Google Scholar

    [9]

    Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006Google Scholar

    [10]

    Tan X J, Shao H Z, He J, Liu G Q, Xu J T, Jiang J, Jiang H C 2016 Phys. Chem. Chem. Phys. 18 7141Google Scholar

    [11]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13261Google Scholar

    [12]

    Ma Z, Lei J, Zhang D, Wang C, Wang J, Cheng Z, Wang Y 2019 ACS Appl. Mater. Interfaces 11 33792Google Scholar

    [13]

    Bhat D K, Shenoy U S 2017 J. Phys. Chem. C 121 7123Google Scholar

    [14]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [15]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [16]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [17]

    Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B 2016 Adv. Electron. Mater. 2 1600019Google Scholar

    [18]

    Hu L, Zhang Y, Wu H, Li J, Li Y, McKenna M, He J, Liu F, Pennycook S J, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [19]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [20]

    Tang J, Yao Z, Wu Y, Lin S, Xiong F, Li W, Chen Y, Zhu T, Pei Y 2020 Mater. Today Phys. 15 100247Google Scholar

    [21]

    Xu X, Cui J, Yu Y, Zhu B, Huang Y, Xie L, Wu D, He J 2020 Energy Environ. Sci. 13 5135Google Scholar

    [22]

    Blachnik R, Igel R 1974 Z. Naturforsch., B: Chem. Sci. 29 625Google Scholar

    [23]

    Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y 2017 Adv. Mater. 29 1605887Google Scholar

    [24]

    Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y 2015 J. Materiomics 1 307Google Scholar

    [25]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276Google Scholar

    [26]

    Zak A K, Majid A W H, Abrishami M E, Yousefi R 2011 Solid State Sci. 13 251Google Scholar

    [27]

    Sarker P, Sen S K, Mia M N H, Pervez M F, Mortuza A A, Hossain S, Mortuza M F, Ali M H, Nur S, Kabir H, Chowdhury M A M 2021 Ceram. Int. 47 3626Google Scholar

    [28]

    Guo F, Cui B, Liu Y, Meng X, Cao J, Zhang Y, He R, Liu W, Wu H, Pennycook S J, Cai W, Sui J 2018 Small 14 1802615Google Scholar

    [29]

    Acharya S, Pandey J, Soni A 2016 Appl. Phys. Lett. 109 133904Google Scholar

    [30]

    Li S M, Li J Q, Yang L, Liu F S, Ao W Q, Li Y 2016 Mater. Des. 108 51Google Scholar

    [31]

    Uher C 2016 Materials Aspect of Thermoelectricity (Vol. 1) (Boca Raton: CRC Press) p8

    [32]

    傅铁铮, 沈家骏, 忻佳展, 朱铁军 2019 硅酸盐学报 47 1467

    Fu T Z, Shen J J, Qi J Z, Zhu T J 2019 J. Chin. Ceram. Soc. 47 1467

    [33]

    Brebrick R F, Strauss A J 1963 Phys. Rev. 131 104Google Scholar

    [34]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

    [35]

    Shenoy U S, Bhat D K 2020 J. Mater. Chem. C 8 2036Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041516Google Scholar

    [37]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [38]

    Hussain T, Li X, Danish M H, Rehman M U, Zhang J, Li D, Chen G, Tang G 2020 Nano Energy 73 104832Google Scholar

    [39]

    Li W, He Q Y, Chen J F, Pan Z L, Wang T 2014 Chem. Phys. Lett. 616-617 196Google Scholar

    [40]

    Guo F, Wu H, Zhu J, Yao H, Zhang Y, Cui B, Zhang Q, Yu B, Pennycook S J, Cai W, Chu C W, Sui J 2019 Proc. Natl. Acad. Sci. U.S.A. 116 21998Google Scholar

    [41]

    Wang H, Hwang J, Zhang C, Wang T, Su W, Kim H, Kim J, Zhai J, Wang X, Park H, Kim W, Wang C 2017 J. Mater. Chem. A 5 14165Google Scholar

    [42]

    Tang J, Yao Z, Chen Z, Lin S, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2019 Mater. Today Phys. 9 100091Google Scholar

    [43]

    Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J, Zhao L D 2019 J. Alloys Compd. 773 571Google Scholar

  • [1] 卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓. 碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测.  , 2024, 73(1): 016301. doi: 10.7498/aps.73.20231279
    [2] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能.  , 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [5] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能.  , 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [6] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比.  , 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究.  , 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能.  , 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征.  , 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控.  , 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [16] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [17] 郭熹, 王霞, 郑鹉, 唐为华. Eu掺杂TbMnO3多晶材料的介电性质.  , 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [18] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [19] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [20] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
计量
  • 文章访问数:  5735
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 修回日期:  2021-03-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回
Baidu
map