-
热电材料是一种可实现热能和电能之间直接转换的新型功能材料, 因用途广泛而受到大量的关注. 但是当今热电转换效率较低, 限制了热电器件的大范围应用, 而热电转换效率主要局限于材料的热电性能. 本文选取了一种黄铜矿结构的化合物CuGaTe2作为研究对象, 利用真空熔炼法合成了一系列磁性元素Ni掺杂的样品Cu1–xNixGaTe2 (x = 0—0.75%), 并探究了其热、电输运性能的变化规律. 研究结果表明, Ni原子可以有效地替代该材料的Cu原子并引起载流子浓度的略微下降和迁移率的提升. 同时, 掺杂Ni后样品的Seebeck系数显著提高. 一方面, Seebeck系数的提升是由于样品载流子浓度的下降; 另一方面, 掺杂后费米能级附近态密度的有效提升是Seebeck系数明显增强的主要原因. 其次, Ni掺杂引起点缺陷散射的增强有效地降低了材料的热导率, 其晶格热导率最小值比基体下降了约30%. 最终, 在873 K下, 在Cu0.095Ni0.005GaTe2样品中获得了最大ZT值, 约为1.26, 比基体CuGaTe2的ZT值增大了约56%. 本文的工作表明, 在Cu位掺杂磁性元素Ni是提升CuGaTe2体系材料热电性能的有效手段之一.Thermoelectric material is a new type of functional material that can realize the direct conversion between heat energy and electric energy. It has received a lot of attention because it has wide practical applications. However, the applications of thermoelectric devices are limited by their low conversion efficiencies. The conversion efficiency is determined mainly by the thermoelectric properties of the material. In this work, a compound of CuGaTe2 chalcopyrite is selected as a research object, and a series of Ni-doped samples Cu1–xNixGaTe2 (x = 0–0.75%) is synthesized by the vacuum melting method. The temperature dependent thermal and electrical properties for Cu1–xNixGaTe2 (x = 0–0.75%) compounds are investigated. The results show that the Ni atom can effectively replace the Cu atom of the material, and thus leading the carrier concentration to decrease slightly and inducing the mobility to increase. At the same time, the Seebeck coefficient increases significantly after Ni doping: on the one hand, the increase is due to the decrease of the carrier concentration of the sample; on the other hand, the effective increase of the density of states near the Fermi level plays an important role in increasing Seebeck coefficient. Then, the thermal conductivity decreases effectively due to the enhancement of point defect scattering caused by Ni doping, and the minimum lattice thermal conductivity is reduced by ~30% in comparison with the matrix lattice thermal conductivity. Finally, the maximum ZT value for Cu0.095Ni0.005GaTe2 sample (ZT = 1.26 at 873 K) is obtained to be ~56% larger than that for CuGaTe2. This work indicates that the doping magnetic element Ni at Cu site is also one of the effective ways to improve the thermoelectric properties of CuGaTe2 materials.
-
Keywords:
- thermoelectric material /
- CuGaTe2 /
- density of state /
- ZT value /
- thermoelectric figure of merit
[1] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[2] Bell L E 2008 Science 321 1457Google Scholar
[3] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818Google Scholar
[4] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar
[5] Chen X Q, Liu J, Li J 2021 Innovation 2 100134
[6] Riffat S B, Ma X L 2003 Appl. Therm. Eng. 23 913Google Scholar
[7] Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, Zhang W 2021 Innovation 2 100101
[8] Zhang J, Huang L, Zhu C, Zhou C, Jabar B, Li J, Zhu X, Wang L, Song C, Xin H, Li D, Qin X 2019 Adv. Mater. 31 1905210Google Scholar
[9] Shay J L, Wernick J H 1975 Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (London: Pergamon Press Ltd.) p112
[10] Slack G A, Rowe D 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p280
[11] Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42
[12] Shi X, Huang F, Liu M, Chen L 2009 Appl. Phys. Lett. 94 122103Google Scholar
[13] Cho J, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X, Uher C 2011 Phys. Rev. B 84 085207Google Scholar
[14] Liu M L, Chen I W, Huang F Q, Chen L D 2009 Adv. Mater. 21 3808Google Scholar
[15] Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029Google Scholar
[16] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818Google Scholar
[17] Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18Google Scholar
[18] Skoug E J, Cain J D, Majsztrik P, Kirkham M, Lara-Curzio E, Morelli D T 2011 Sci. Adv. Mater. 3 602Google Scholar
[19] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422Google Scholar
[20] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y 2012 Adv. Mater. 24 3622Google Scholar
[21] Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903Google Scholar
[22] Zeier WG, LaLonde A, Gibbs Z M, Heinrich C P, Panthöfer M, Snyder G J, Tremel W 2012 J. Am. Chem. Soc. 134 7147Google Scholar
[23] Parker D, Singh D J 2012 Phys. Rev. B 85 125209Google Scholar
[24] Wu W, Wu K, Ma Z, Sa R 2012 Chem. Phys. Lett. 537 62Google Scholar
[25] Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S 2012 Appl. Phys. Lett. 100 042108Google Scholar
[26] Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902Google Scholar
[27] Kuhn B, Kaefer W, Fess K, Friemelt K, Turner C, Wendl M, Bucher E 1997 Phys. Status Solidi 162 661Google Scholar
[28] Zhang J, Qin X Y, Li D, Xin H X, Song C J, Li L L, Wang Z M, Guo G L, Wang L 2014 J. Alloys Compd. 586 285Google Scholar
[29] Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677Google Scholar
[30] Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar
[31] Ahmed F, Tsujii N, Mori T 2017 J. Mater. Chem. A 5 7545Google Scholar
[32] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[33] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[34] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 169
[35] Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar
[36] Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar
[37] Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar
[38] Jonson M, Mahan G 1980 Phys. Rev. B 21 4223Google Scholar
[39] Xu R, Huang L, Zhang J, Li D, Liu J, Liu J, Fang J, Wang M, Tang G 2019 J. Mater. Chem. A 7 15757Google Scholar
-
图 1 (a) Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品室温下的XRD图谱, 其中, 在右上角附注(112)衍射峰的放大图; (b) Cu0.995Ni0.005GaTe2样品的XRD数据结构精修图, λ2和Rw为精修的误差参数
Fig. 1. (a) XRD results of Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples at room temperature, and the enlarged view of (112) diffraction peak is attached in the upper right corner; (b) results of refined XRD for Cu0.995Ni0.005GaTe2 sample, λ2 and Rw are the refined error parameters.
图 3 Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品的 (a)电导率随温度的变化, (b)室温下载流子浓度和迁移率, (c) Seebeck系数和(d)功率因子随温度的变化
Fig. 3. Electrical properties of Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples: (a) Dependence of electrical conductivity with temperature; (b) carrier concentration and carrier mobility at room temperature; dependence of (c) Seebeck coefficient and (d) power factor with temperature.
-
[1] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[2] Bell L E 2008 Science 321 1457Google Scholar
[3] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818Google Scholar
[4] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar
[5] Chen X Q, Liu J, Li J 2021 Innovation 2 100134
[6] Riffat S B, Ma X L 2003 Appl. Therm. Eng. 23 913Google Scholar
[7] Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, Zhang W 2021 Innovation 2 100101
[8] Zhang J, Huang L, Zhu C, Zhou C, Jabar B, Li J, Zhu X, Wang L, Song C, Xin H, Li D, Qin X 2019 Adv. Mater. 31 1905210Google Scholar
[9] Shay J L, Wernick J H 1975 Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (London: Pergamon Press Ltd.) p112
[10] Slack G A, Rowe D 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p280
[11] Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42
[12] Shi X, Huang F, Liu M, Chen L 2009 Appl. Phys. Lett. 94 122103Google Scholar
[13] Cho J, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X, Uher C 2011 Phys. Rev. B 84 085207Google Scholar
[14] Liu M L, Chen I W, Huang F Q, Chen L D 2009 Adv. Mater. 21 3808Google Scholar
[15] Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029Google Scholar
[16] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818Google Scholar
[17] Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18Google Scholar
[18] Skoug E J, Cain J D, Majsztrik P, Kirkham M, Lara-Curzio E, Morelli D T 2011 Sci. Adv. Mater. 3 602Google Scholar
[19] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422Google Scholar
[20] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y 2012 Adv. Mater. 24 3622Google Scholar
[21] Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903Google Scholar
[22] Zeier WG, LaLonde A, Gibbs Z M, Heinrich C P, Panthöfer M, Snyder G J, Tremel W 2012 J. Am. Chem. Soc. 134 7147Google Scholar
[23] Parker D, Singh D J 2012 Phys. Rev. B 85 125209Google Scholar
[24] Wu W, Wu K, Ma Z, Sa R 2012 Chem. Phys. Lett. 537 62Google Scholar
[25] Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S 2012 Appl. Phys. Lett. 100 042108Google Scholar
[26] Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902Google Scholar
[27] Kuhn B, Kaefer W, Fess K, Friemelt K, Turner C, Wendl M, Bucher E 1997 Phys. Status Solidi 162 661Google Scholar
[28] Zhang J, Qin X Y, Li D, Xin H X, Song C J, Li L L, Wang Z M, Guo G L, Wang L 2014 J. Alloys Compd. 586 285Google Scholar
[29] Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677Google Scholar
[30] Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar
[31] Ahmed F, Tsujii N, Mori T 2017 J. Mater. Chem. A 5 7545Google Scholar
[32] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[33] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[34] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 169
[35] Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar
[36] Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar
[37] Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar
[38] Jonson M, Mahan G 1980 Phys. Rev. B 21 4223Google Scholar
[39] Xu R, Huang L, Zhang J, Li D, Liu J, Liu J, Fang J, Wang M, Tang G 2019 J. Mater. Chem. A 7 15757Google Scholar
计量
- 文章访问数: 4836
- PDF下载量: 147
- 被引次数: 0