-
相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 x 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.Thermoelectric materials can generate electricity by harnessing the temperature gradient and lowering the temperature through applying electromotive force. Lead chalcogenides based materials, especially PbTe-based ones, have shown extremely high thermoelectric performance. PbSe has a similar crystal structure and band structure to PbTe. Compared with the commonly-used PbTe, PbSe possesses a high melting point and has an abundant reserve of Se, making it attractive to high temperature thermoelectric applications. It has been theoretically proposed that Mn-doping in lead chalcogenide should be able to lower the temperature of band degeneracy, and experimental evidences have been represented in Mn-PbTe. However, such an experimental study as well as the investigations of influences of Mn on microstructure, mechanical, electrical and thermal properties has not been conducted in Mn-PbSe. In this work, Pb0.98-xMnxNa0.02Se (0 x 0.12) materials are prepared by the melting-quenching techniques combined with rapid hot-press sintering. Effects of Mn doping on the microstructures, mechanical and thermoelectric properties of PbSe samples are systematically studied. The refined lattice parameters from X-ray powder diffraction patterns show that the solubility of Mn in the matrix is in a range from 0 to 0.04. The back-scattered electron images and elemental maps reveal that the MnSe-rich impurity phases exist in the PbSe matrix, which makes the PbSe-MnSe system a nano-composite system. Pb0.96Mn0.02Na0.02Se has also such microstructures, implying that the solubility of Mn should be below 0.02. Cubic-phase MnSe-rich precipitates have the sizes ranging from 50 nanometers to 1-5 micrometers. They are well dispersed in the PbSe-rich matrix, as round or layered microstructures. The mechanical properties of the nanocomposites can be determined by micro-hardness measurements. Interestingly, the average Vickers hardness values of the PbSe-MnSe nanocomposites are significantly improved, which are 16.6% and 51.6% harder respectively in x= 0.02 and 0.06 samples than those of pristine PbSe. Smaller Mn content can optimize the figure of merit ZT due to the band convergence and additional phonon scattering by precipitates, while higher Mn content has little influence on ZT because of the saturated Seebeck coefficient and anomalous increase in lattice thermal conductivity. As a result, the highest figure of merit is 0.52 at 712 K, which is achieved in the Pb0.96Mn0.02Na0.02Se sample. By further adjusting the Na content from 2% to 0.7%, the carrier concentration is optimized. Thus, the Seebeck coefficient and power factor become higher. A figure of merit of 0.65 is achieved at 710 K in the PbSe-MnSe nano-composite with a nominal composition of Pb0.973Mn0.02Na0.007Se. We suggest that further optimizing the electrical properties may achieve a higher thermoelectric performance in the PbSe-MnSe system.
-
Keywords:
- nano-composites /
- thermoelectric materials /
- PbSe
[1] Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Zhang X, Zhao L D 2015 J. Materiomics 1 92
[5] Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549
[6] Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)
[7] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[8] Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 59 7232]
[9] Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561
[10] Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202
[11] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302
[12] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14
[13] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[14] Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402
[15] Liu Y, Li H J 2015 Chin. Phys. B 24 047202
[16] Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537
[17] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[18] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[19] Kanatzidis M G 2009 Chem. Mater. 22 648
[20] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818
[21] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160
[22] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[23] Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)
[24] Parker D, Singh D J 2010 Phys. Rev. B 82 035204
[25] Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[26] Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[27] Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804
[28] Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705
[29] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246
[30] Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501
[31] Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28
[32] Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303
[33] Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125
[34] Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000
[35] Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579
-
[1] Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Zhang X, Zhao L D 2015 J. Materiomics 1 92
[5] Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549
[6] Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)
[7] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[8] Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 59 7232]
[9] Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561
[10] Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202
[11] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302
[12] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14
[13] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[14] Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402
[15] Liu Y, Li H J 2015 Chin. Phys. B 24 047202
[16] Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537
[17] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[18] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[19] Kanatzidis M G 2009 Chem. Mater. 22 648
[20] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818
[21] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160
[22] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[23] Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)
[24] Parker D, Singh D J 2010 Phys. Rev. B 82 035204
[25] Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[26] Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[27] Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804
[28] Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705
[29] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246
[30] Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501
[31] Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28
[32] Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303
[33] Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125
[34] Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000
[35] Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579
计量
- 文章访问数: 7449
- PDF下载量: 344
- 被引次数: 0