搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维共价键子结构Zintl相热电材料研究及进展

袁珉慧 乐文凯 谈小建 帅晶

引用本文:
Citation:

二维共价键子结构Zintl相热电材料研究及进展

袁珉慧, 乐文凯, 谈小建, 帅晶

Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials

Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing
PDF
HTML
导出引用
  • 热电材料可以实现热能和电能间的直接相互转换, 在半导体制冷和热能回收方面有着重要应用. Zintl相热电材料由电负性差异较大的阴阳离子组成, 其输运特征符合“声子玻璃, 电子晶体”的概念, 因此受到了广泛的研究, 特别是具有二维共价键子结构Zintl相热电材料凭借优异的电性能更是被寄予厚望. 本文综述了具有二维共价键子结构的典型Zintl相热电材料, 梳理了研究最广且性能突出的CaAl2Si2结构1-2-2型、原胞内原子较多本征低热导率的9–4+x–9型、具有天然空位而本征热导率极低的2-1-2型、以及电性能相对较好的ZrBeSi结构1-1-1型Zintl相的研究进展; 其中还特别总结了性能优异的Mg3Sb2基n型Zintl材料的研究发展. 本文概括总结了每种体系近年来的研究进展及性能调控方法, 讨论了进一步优化其热电性能的可能策略, 并对其未来发展进行了展望.
    Thermoelectric materials can realize the direct conversion between thermal energy and electrical energy, and thus having important applications in semiconductor refrigeration and heat recovery. Zintl phase is composed of highly electronegative cations and anions, which accords with the concept of “phonon glass, electron crystal” (PGEC). Thermoelectric properties of Zintl phase have attracted extensive interest, among which the two-dimensional (2D) covalent bond structure featured Zintl phases have received more attention for their outstanding electrical properties. In this review, Zintl phase materials with two-dimensional covalent bond substructures are reviewed, including 1-2-2-type, 9–4+x–9-type, 2-1-2-type and 1-1-1-type Zintl phase. The 1-2-2-type Zintl phase is currently the most widely studied and best-performing Zintl material. It is worth mentioning that the maximum ZT value for the Mg3Sb2-based n-type Zintl material with the CaAl2Si2 structure has been reported to reach 1.85, and the average ZT value near room temperature area also reaches 1.4. The 9–4+x–9-type Zintl material with a mass of atoms in unit cell contributes to lower thermal conductivity thus relatively high ZT value. The 2-1-2-type Zintl material has extremely low thermal conductivity due to the intrinsic vacancies, which has been developing in recent years. The 1-1-1-type Zintl material with the same ZrBeSi structure as the 2-1-2-type Zintl material, shows better electrical transport performance. In sum, this review summarizes the recent progress and optimization methods of those typical Zintl phases above. Meanwhile, the future optimization and development of Zintl phase with two-dimensional covalent bond substructures are also prospected.
      通信作者: 谈小建, tanxiaojian@nimte.ac.cn ; 帅晶, shuaij3@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52002413, 21875273)、广东省自然科学基金(批准号: 2021A1515010612)、浙江省自然科学基金杰出青年项目(批准号: LR21E020002)和中国科学院青年创新促进会(批准号: 2019298)资助的课题.
      Corresponding author: Tan Xiao-Jian, tanxiaojian@nimte.ac.cn ; Shuai Jing, shuaij3@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52002413, 21875273), the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515010612), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR21E020002), and Youth Innovation Promotion Association CAS (Grant No. 2019298).
    [1]

    Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC/Taylor & Francis)

    [2]

    Goldsmid H J 2010 Introduction to Thermoelectricity (Vol. 121) (Berlin, Heidelberg: Springer Berlin Heidelberg)

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [5]

    Ren Z F, Lan Y C, Zhang Q Y 2017 Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems (Boca Raton, FL: CRC Press)

    [6]

    Zintl E 1939 Angew. Chem. 52 1Google Scholar

    [7]

    Laves F 1941 Naturwissenschaften 29 244Google Scholar

    [8]

    Shuai J, Geng H Y, Lan Y C, Zhu Z, Wang C, Liu Z, Bao J M, Chu C W, Sui J H, Ren Z F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E4125Google Scholar

    [9]

    Shuai J, Mao J, Song S W, Zhu Q, Sun J F, Wang Y M, He R, Zhou J W, Chen G, Singh D J, Ren Z F 2017 Energy Environ. Sci. 10 799Google Scholar

    [10]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [11]

    Song S W, Mao J, Bordelon M, He R, Wang Y M, Shuai J, Sun J Y, Lei X B, Ren Z S, Chen S, Wilson S, Nielsch K, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 8 25Google Scholar

    [12]

    Chen X X, Zhu J B, Qin D D, Qu N, Xue W H, Wang Y M, Zhang Q, Cai W, Guo F K, Sui J H 2021 Science China-Materials 64 1761

    [13]

    Song S W, Mao J, Shuai J, Zhu H T, Ren Z, Saparamadu U, Tang Z J, Wang B, Ren Z F 2018 Appl. Phys. Lett. 112 092103Google Scholar

    [14]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873Google Scholar

    [15]

    Hu Y, Bux S K, Grebenkemper J H, Kauzlarich S M 2015 J. Mater. Chem. C 3 10566Google Scholar

    [16]

    Tan W, Liu Y, Zhu M, Zhu T, Zhao X, Tao X, Xia S 2017 Inorg. Chem. 56 1646Google Scholar

    [17]

    Baranets S, Bobev S 2020 Mater. Today Adv. 7 100094Google Scholar

    [18]

    Zevalkink A, Toberer E S, Zeier W G, Flage-Larsen E, Snyder G J 2011 Energy Environ. Sci. 4 510Google Scholar

    [19]

    Xia S Q, Bobev S 2008 J. Comput. Chem. 29 2125Google Scholar

    [20]

    Toberer E S, Zevalkink A, Crisosto N, Snyder G J 2010 Adv. Funct. Mater. 20 4375Google Scholar

    [21]

    Zhang Z W, Yan Y R, Li X F, Wang X Y, Li J, Chen C, Cao F, Sui J H, Lin X, Liu X J, Xie G Q, Zhang Q 2020 Adv. Energy Mater. 10 2001229Google Scholar

    [22]

    Song L R, Zhang J W, Iversen B B 2017 J. Mater. Chem. A 5 4932Google Scholar

    [23]

    Lin Y, Wood M, Imasato K, Kuo J J, Lam D, Mortazavi A N, Slade T J, Hodge S A, Xi K, Kanatzidis M G, Clarke D R, Hersam M C, Snyder G J 2020 Energy Environ. Sci. 13 4114Google Scholar

    [24]

    Chen C, Li X F, Xue W H, Bai F X, Huang Y, Yao H H, Li S, Zhang Z W, Wang X Y, Sui J H, Liu X J, Cao F, Wang Y M, Zhang Q 2020 Nano Energy 73 104771Google Scholar

    [25]

    Chen C, Xue W H, Li S, Zhang Z W, Li X F, Wang X Y, Liu Y J, Sui J H, Liu X J, Cao F, Ren Z F, Chu C W, Wang Y M, Zhang Q 2019 Proc. Natl. Acad. Sci. U.S.A. 116 2831Google Scholar

    [26]

    Zhang W M, Chen C, Yao H H, Xue W H, Li S, Bai F X, Huang Y F, Li X F, Lin X, Cao F, Sui J H, Wang S F, Yu B, Wang Y M, Liu X J, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [27]

    Ohno S, Aydemir U, Amsler M, Pöhls J H, Chanakian S, Zevalkink A, White M A, Bux S K, Wolverton C, Snyder G J 2017 Adv. Funct. Mater. 27 1606361Google Scholar

    [28]

    Chen C, Xue W H, Li X F, Lan Y C, Zhang Z W, Wang X Y, Zhang F, Yao H H, Li S, Sui J H, Han P D, Liu X J, Cao F, Wang Y M, Zhang Q 2019 ACS Appl. Mater. Interfaces 11 37741Google Scholar

    [29]

    Aydemir U, Zevalkink A, Ormeci A, Gibbs Z M, Bux S, Snyder G J 2015 Chem. Mater. 27 1622Google Scholar

    [30]

    Aydemir U, Zevalkink A, Ormeci A, Bux S, Snyder G J 2016 J. Mater. Chem. A 4 1867Google Scholar

    [31]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [32]

    Brown S R, Toberer E S, Ikeda T, Cox C A, Gascoin F, Kauzlarich S M, Snyder G J 2008 Chem. Mater. 20 3412Google Scholar

    [33]

    Toberer E S, Cox C A, Brown S R, Ikeda T, May A F, Kauzlarich S M, Snyder G J 2008 Adv. Funct. Mater. 18 2795Google Scholar

    [34]

    Wang X, Li J, Wang C, Zhou B Q, Zheng L T, Gao B, Chen Y, Pei Y Z 2018 Chem. Mater. 30 5339Google Scholar

    [35]

    Ohno S, Zevalkink A, Takagiwa Y, Bux S K, Snyder G J 2014 J. Mater. Chem. A 2 7478Google Scholar

    [36]

    Gascoin F, Ottensmann S, Stark D, Haïle S M, Snyder G J 2005 Adv. Funct. Mater. 15 1860Google Scholar

    [37]

    Cao Q G, Zhang H, Tang M B, Chen H H, Yang X X, Grin Y, Zhao J T 2010 J. Appl. Phys. 107 053714Google Scholar

    [38]

    Wang X J, Tang M B, Zhao J T, Chen H H, Yang X X 2007 Appl. Phys. Lett. 90 232107Google Scholar

    [39]

    May A F, McGuire M A, Singh D J, Ma J, Delaire O, Huq A, Cai W, Wang H 2012 Phys. Rev. B 85 035202Google Scholar

    [40]

    Cao Q, Zheng J, Zhang K, Ma G 2016 J. Alloys Compd. 680 278Google Scholar

    [41]

    Wang X, Li W, Zhou B, Sun C, Zheng L, Tang J, Shi X, Pei Y 2019 Mater. Today Phys. 8 123Google Scholar

    [42]

    Zheng L T, Li W, Wang X, Pei Y Z 2019 J. Mater. Chem. A 7 12773Google Scholar

    [43]

    Guo M C, Zhu J B, Guo F K, Zhang Q, Cai W, Sui J H 2020 Mater. Today Phys. 15 100270Google Scholar

    [44]

    Wang J, Guo M C, Zhu J B, Qin D D, Guo F kai, Zhang Q, Cai W, Sui J H 2020 J. Mater. Sci. Technol. 59 189Google Scholar

    [45]

    Saparamadu U, Tan X J, Sun J F, Ren Z S, Song S W, Singh D J, Shuai J, Jiang J, Ren Z F 2020 J. Mater. Chem. A 8 15760Google Scholar

    [46]

    Wang X J, Tang M B, Chen H H, Yang X X, Zhao J T, Burkhardt U, Grin Y 2009 Appl. Phys. Lett. 94 092106Google Scholar

    [47]

    Zhang H, Baitinger M, Tang M B, Man Z Y, Chen H H, Yang X X, Liu Y, Chen L, Grin Y, Zhao J T 2010 Dalton Trans. 39 1101Google Scholar

    [48]

    Bhardwaj A, Misra D K 2014 RSC Adv. 4 34552Google Scholar

    [49]

    Shuai J, Liu Z H, Kim H S, Wang Y, Mao J, He R, Sui J H, Ren Z F 2016 J. Mater. Chem. A 4 4312Google Scholar

    [50]

    Zhu M, Wu Z, Liu Q, Zhu T J, Zhao X B, Huang B, Tao X, Xia S Q 2018 J. Mater. Chem. A 6 11773Google Scholar

    [51]

    Yang C H, Guo K, Yang X X, Xing J J, Wang K, Luo J, Zhao J T 2019 ACS Appl. Energy Mater. 2 889Google Scholar

    [52]

    Zhang X, Gu H S, Zhang Y, Guo L J, Yang J T, Luo S J, Lu X, Chen K S, Chai H X, Wang G Y, Zhang X, Zhou X Y 2019 Chem. Eng. J. 374 589Google Scholar

    [53]

    Zhang J W, Song L R, Madsen G K H, Fischer K F F, Zhang W Q, Shi X, Iversen B B 2016 Nat. Commun. 7 10892Google Scholar

    [54]

    Shuai J, Kim H S, Liu Z H, He R, Sui J H, Ren Z F 2016 Appl. Phys. Lett. 108 183901Google Scholar

    [55]

    Gong J J, Hong A J, Shuai J, Li L, Yan Z B, Ren Z F, Liu J M 2016 Phys. Chem. Chem. Phys. 18 16566Google Scholar

    [56]

    Pomrehn G S, Zevalkink A, Zeier W G, van de Walle A, Snyder G J 2014 Angew. Chem. Int. Ed. 53 3422Google Scholar

    [57]

    Yu C, Zhu T J, Zhang S N, Zhao X B, He J, Su Z, Tritt T M 2008 J. Appl. Phys. 104 013705Google Scholar

    [58]

    Zhang H, Zhao J T, Grin Y, Wang X J, Tang M B, Man Z Y, Chen H H, Yang X X 2008 J. Chem. Phys. 129 164713Google Scholar

    [59]

    Zhang H, Fang L, Tang M B, Man Z Y, Chen H H, Yang X X, Baitinger M, Grin Y, Zhao J T 2010 J. Chem. Phys. 133 194701Google Scholar

    [60]

    Guo K, Cao Q G, Feng X J, Tang M B, Chen H H, Guo X, Chen L, Grin Y, Zhao J T 2011 Eur. J. Inorg. Chem. 2011 4043Google Scholar

    [61]

    Zevalkink A, Zeier W G, Cheng E, Snyder J, Fleurial J P, Bux S 2014 Chem. Mater. 26 5710Google Scholar

    [62]

    Zhang J, Song L, Iversen B B 2019 npj Comput. Mater. 5 76Google Scholar

    [63]

    Shuai J, Mao J, Song S W, Zhang Q Y, Chen G, Ren Z F 2017 Mater. Today Phys. 1 74Google Scholar

    [64]

    Bhardwaj A, Chauhan N S, Misra D K 2015 J. Mater. Chem. A 3 10777Google Scholar

    [65]

    Meng F C, Sun S S, Ma J L, Chronister C, He J, Li W 2020 Mater. Today Phys. 13 100217Google Scholar

    [66]

    Shuai J, Wang Y M, Kim H S, Liu Z H, Sun J Y, Chen S, Sui J H, Ren Z F 2015 Acta Mater. 93 187Google Scholar

    [67]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [68]

    Kanno T, Tamaki H, Yoshiya M, Uchiyama H, Maki S, Takata M, Miyazaki Y 2021 Adv. Funct. Mater. 31 2008469Google Scholar

    [69]

    Mao J, Shuai J, Song S W, Wu Y X, Dally R, Zhou J W, Liu Z H, Sun J F, Zhang Q Y, dela Cruz C, Wilson S, Pei Y Z, Singh D J, Chen G, Chu C W, Ren Z F 2017 Proc. Natl. Acad. Sci. U.S.A. 114 10548Google Scholar

    [70]

    Imasato K, Fu C G, Pan Y, Wood M, Kuo J J, Felser C, Snyder G J 2020 Adv. Mater. 32 1908218Google Scholar

    [71]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [72]

    Ohno S, Imasato K, Anand S, Tamaki H, Kang S D, Gorai P, Sato H K, Toberer E S, Kanno T, Snyder G J 2018 Joule 2 141Google Scholar

    [73]

    Kanno T, Tamaki H, Sato H K, Kang S D, Ohno S, Imasato K, Kuo J J, Snyder G J, Miyazaki Y 2018 Appl. Phys. Lett. 112 033903Google Scholar

    [74]

    Shi X M, Sun C, Bu Z L, Zhang X Y, Wu Y X, Lin S Q, Li W, Faghaninia A, Jain A, Pei Y Z 2019 Adv. Sci. 6 1802286Google Scholar

    [75]

    Shi X M, Zhao T T, Zhang X Y, Sun C, Chen Z W, Lin S Q, Li W, Gu H, Pei Y Z 2019 Adv. Mater. 31 1903387Google Scholar

    [76]

    Bhardwaj A, Rajput A, Shukla A K, Pulikkotil J J, Srivastava A K, Dhar A, Gupta G, Auluck S, Misra D K, Budhani R C 2013 RSC Adv. 3 8504Google Scholar

    [77]

    Shi X M, Wang X, Li W, Pei Y Z 2018 Small Methods 2 1800022Google Scholar

    [78]

    Shu R, Zhou Y C, Wang Q, Han Z J, Zhu Y B, Liu Y, Chen Y X, Gu M, Xu W, Wang Y, Zhang W Q, Huang L, Liu W S 2019 Adv. Funct. Mater. 29 1807235Google Scholar

    [79]

    Hu L P, Zhu T J, Liu X H, Zhao X B 2014 Adv. Funct. Mater. 24 5211Google Scholar

    [80]

    Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X 2015 Adv. Energy Mater. 5 1500411Google Scholar

    [81]

    Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X, Hu L, Ying P, He J, Zhao X 2016 J. Materiomics 2 141Google Scholar

    [82]

    Imasato K, Kang S D, Snyder G J 2019 Energy Environ. Sci. 12 965Google Scholar

    [83]

    Condron C L, Kauzlarich S M, Gascoin F, Snyder G J 2006 J. Solid State Chem. 179 2252Google Scholar

    [84]

    Brechtel E, Cordier G, Schafer H 1979 Z. Naturforsch. , B:Chem. Sci. 34 1229Google Scholar

    [85]

    Kim S J, Salvador J, Bilc D, Mahanti S D, Kanatzidis M G 2001 J. Am. Chem. Soc. 123 12704Google Scholar

    [86]

    Bobev S, Thompson J D, Sarrao J L, Olmstead M M, Hope H, Kauzlarich S M 2004 Inorg. Chem. 43 5044Google Scholar

    [87]

    Bux S K, Zevalkink A, Janka O, Uhl D, Kauzlarich S, Snyder J G, Fleurial J P 2014 J. Mater. Chem. A 2 215Google Scholar

    [88]

    Kazem N, Zaikina J V, Ohno S, Snyder G J, Kauzlarich S M 2015 Chem. Mater. 27 7508Google Scholar

    [89]

    Wu Z, Li J, Li X, Zhu M, Wu K C, Tao X T, Huang B B, Xia S Q 2016 Chem. Mater. 28 6917Google Scholar

    [90]

    Zhang J, Liu Q, Liu K F, Tan W J, Liu X C, Xia S Q 2021 Inorg. Chem. 60 4026Google Scholar

    [91]

    Liu X C, Wu Z, Xia S Q, Tao X T, Bobev S 2015 Inorg. Chem. 54 947Google Scholar

    [92]

    Cooley J A, Promkhan P, Gangopadhyay S, Donadio D, Pickett W E, Ortiz B R, Toberer E S, Kauzlarich S M 2018 Chem. Mater. 30 484Google Scholar

    [93]

    Xia S Q, Bobev S 2007 J. Am. Chem. Soc. 129 4049Google Scholar

    [94]

    Wilson D K, Saparov B, Bobev S 2011 Z. Anorg. Allg. Chem. 637 2018Google Scholar

    [95]

    Wang J, Xia S Q, Tao X T, Schäfer M C, Bobev S 2013 J. Solid State Chem. 205 116Google Scholar

    [96]

    Yan J, Gorai P, Ortiz B, Miller S, Barnett S A, Mason T, Stevanović V, Toberer E S 2015 Energy Environ. Sci. 8 983Google Scholar

    [97]

    Ovchinnikov A, Saparov B, Xia S Q, Bobev S 2017 Inorg. Chem. 56 12369Google Scholar

    [98]

    Sun J F, Singh D J 2017 J. Mater. Chem. A 5 8499Google Scholar

    [99]

    Ma H Q, Li G D, Zhang X L, Huang H J, Duan B, Zhai P C 2020 J. Alloys Compd. 843 155981Google Scholar

    [100]

    Li Y, Chen J X, Cai P W, Wen Z H 2018 J. Mater. Chem. A 6 4948Google Scholar

    [101]

    Yao H H, Chen C, Xue W H, Bai F X, Cao F, Lan Y C, Liu X J, Wang Y M, Singh D J, Lin X, Zhang Q 2021 Sci. Adv. 7 eabd6162Google Scholar

    [102]

    Merlo F, Pani M, Fornasini M L 1990 J. Less-Common Met. 166 319Google Scholar

    [103]

    Romaka V V, Falmbigl M, Grytsiv A, Rogl P 2014 J. Alloys Compd. 585 287Google Scholar

    [104]

    Altayeb A, Sondezi B M, Tchoula Tchokonté M B, Strydom A M, Doyle T B, Kaczorowski D 2017 AIP Adv. 7 055714Google Scholar

    [105]

    Chen S C, Lee J R, Syu K J, Lee W H 2014 Solid State Commun. 195 6Google Scholar

    [106]

    Guo J, Zhu M, Li X, Tao X T, Xia S Q 2018 Inorg. Chem. Front. 5 1902Google Scholar

    [107]

    May A F, Toberer E S, Snyder G J 2009 J. Appl. Phys. 106 013706Google Scholar

    [108]

    Pan Y, Fan F R, Hong X, He B, Le C, Schnelle W, He Y, Imasato K, Borrmann H, Hess C, Buechner B, Sun Y, Fu C, Snyder G J, Felser C 2020 Adv. Mater. 33 2003168Google Scholar

    [109]

    Liu Q, Liu X C, Liu K F, Zhang J, Xia S Q 2020 J. Alloys Compd. 847 156551Google Scholar

    [110]

    Balvanz A, Qu J X, Baranets S, Ertekin E, Gorai P, Bobev S 2020 Chem. Mater. 32 10697Google Scholar

  • 图 1  (a) 各类型结构中典型Zintl相ZT值对比图[8,10-12,14,18,21,24,25,28,32-35]; (b) 2D典型Zintl相最大ZT值随时间变化总结图

    Fig. 1.  (a) ZT values of typical Zintl phases with 2D covalent bond substructures [8,10-12,14,18,21,24,25,28,32-35]; (b) summary diagram of the maximum ZT value of some representative 2D Zintl phase over time.

    图 2  AB2X2型Zintl材料 (a) 晶体结构; (b) 单胞扩展键; (c) 单胞不扩展键晶体结构示意图; (d) Sb基AB2X2型Zintl相ZT值对比图; (e) Bi基AB2X2型Zintl相ZT值对比图[8,21,34,36-45]

    Fig. 2.  (a) Crystal structure of AB2X2-type Zintl material; (b), (c) unit cell. Temperature-dependent ZT values of (d) Sb-based AB2X2-type Zintl phases; (e) Bi-based AB2X2-type Zintl phases[8,21,34,36-45].

    图 3  Mg3Sb2 Zintl材料 (a) 晶体结构; (b) c轴方向晶体结构; (c) a轴方向晶体结构示意图; (d) Mg3Sb2结构由传统认为的层状结构到三维结构示意图; (e) 近年Mg3Sb2基Zintl相主要工作ZT值随温度变化图[9,10,22,23,48,66,69,76-78]; (f) 突出Mg3Sb2相300—500 K及300—773 K温区下平均ZT值对比图[9-12,69,73,75,78-82]

    Fig. 3.  (a) Crystal structure of Mg3Sb2; (b) crystal structure along the c axis; (c) crystal structure along the a axis; (d) Mg3Sb2 structure with traditional layered covalent bonds compared to the 3D covalent bonds; (e) temperature-dependent ZT values of Mg3Sb2-based Zintl phases[9,10,22,23,48,66,69,76-78]; (f) average ZT values of Mg3Sb2-based Zintl phases at 300−500 K and 300−773 K[9-12,69,73,75,78-82].

    图 4  Ca9Zn4Sb9相 (a) 晶体结构图; (b) a轴晶体结构图; 9–4+x–9型Zintl相近年来典型结构(c)ZT值随温度变化图; (d) 泽贝克系数随温度变化图; (e) 电阻率随温度变化图; (f) 热导率及晶格热导率随温度变化图[27,28,87-90]

    Fig. 4.  (a) Crystal structure of Ca9Zn4Sb9; (b) crystal structure of Ca9Zn4Sb9 along a axis. Temperature-dependent (c) ZT values; (d) Seebeck coefficient; (e) electrical resistivity; (f) thermal conductivity of 9–4+x–9 type Zintl phases [27,28,87-90].

    图 5  (a) EuZn2Sb2单胞晶体结构图; (b) Eu2ZnSb2相与EuZn2Sb2相结构对比图[25]; (c) Eu2ZnSb2a轴方向晶体结构图; (d) Eu2ZnSb2c轴方向晶体结构示意图; (e) Eu2ZnSb2相扩胞后晶体结构示意图; (f) Eu2ZnSb2相扩胞后a轴方向晶体结构示意图; (g) 2-1-2型Zintl相近年来典型结构ZT值随温度变化图; (h) S随温度变化图; (i) 电阻率随温度变化图; (j) 2-1-2型Zintl相与9–4+x–9, 1-2-2型典型Zintl相晶格热导率随温度变化对比图[8,24,25,27,90,92]

    Fig. 5.  (a) Unit cell of EuZn2Sb2; (b) unit cell of Eu2ZnSb2 ; (c) unit cell of Eu2ZnSb2 along the a axis;(d) crystal structure along the c axis; (e) crystal structure of Eu2ZnSb2; (f) in the a axis direction after cell expansion. Temperature-dependent (g) ZT values; (h) Seebeck coefficient; (i) electrical resistivity of 2-1-2 type Zintl phases; (j) lattice thermal conductivity of 2-1-2, 9–4+x–9 and 1-2-2type Zintl phases [8,24,25,27,90,92].

    图 6  SrAgSbZintl相 (a) 晶体结构示意图; (b)延c轴方向晶体结构示意图. 1-1-1型Zintl相近年来典型结构 (c) ZT值随温度变化图; (d) 电阻率随温度变化图; (e) 热导率随温度变化图; (f) 1-1-1型Zintl相功率因子较同结构1-2-2型Zintl相随温度变化对比图[24-26,106]

    Fig. 6.  (a) Crystal structure of SrAgSb; (b) crystal structure of SrAgSb along the c axis. Temperature-dependent (c) ZT values; (d) power factors (compared with 2-1-2 Zintl phases); (e) electric resistivity; (f) thermal conductivity of typical 1-1-1 Zintl phases[24-26,106].

    表 1  1-2-2型层状Zintl材料热电性能汇总表

    Table 1.  Summary of thermoelectric properties of 1-2-2 type layered Zintl materials.

    时间材料Ρ/(mΩ·cm)S/(μV·K–1)κ/(W·m–1·K–1)ZTT/KZTRT
    2005Ca0.25Yb0.75Zn2Sb2[36]3.71701.40.567730.08
    2007BaZn2Sb2[38]6.11851.250.336730.05
    2008YbZn1.9Mn0.1Sb2[57]1.51501.60.657260.05
    2008EuZn2Sb2[58]1.81801.450.97130.16
    2009YbCd1.6Zn0.4Sb2[46]1.661801.11.26500.2
    2010Yb0.6Ca0.4Cd2Sb2[37]4.42400.90.967000.14
    2010Yb0.75Eu0.25Cd2Sb2[59]424010.976500.18
    2010EuZn1.8Cd0.2Sb2[47]22001.41.066500.18
    2011YbCd1.85Mn0.15Sb2[60]5.72450.61.146500.17
    2012YbMg2Bi2[39]51801.80.446500.07
    2014Yb0.99Zn2Sb2[61]1.31601.70.858000.05
    2016YbCd1.9Mg0.1Sb2[40]3.32301.021.086500.2
    2016Ca0.5Yb0.5Mg2Bi2[49]2.81871.0818730.1
    2016Ca0.995Na0.005Mg2Bi1.98[54]32001.250.98730.05
    2016Eu0.2Yb0.2Ca0.6Mg2Bi2[8]3.52150.921.38750.25
    2018YbCd1.5Zn0.5Sb2[34]1.71721.21.267000.18
    2018Yb0.96Ba0.04Cd1.5Zn0.5Sb2[34]21850.941.37000.18
    2019Ba0.7975Yb0.2Na0.0025Cd2Sb2[41]4.12100.810.937000.1
    2019EuCd1.4Zn0.6Sb2[42]3.522010.967000.18
    2020Ca0.65Yb0.35Mg1.9Zn0.1Bi1.98[43]2.631851.0417730.2
    2020YbMg2Bi1.58Sb0.4[44]4.121911.058730.14
    2020Sm0.25Yb0.375Eu0.375Mg2Bi1.99[45]3.71970.90.97730.18
    2020(Yb0.9Mg0.1)Mg0.8Zn1.198Ag0.002Sb2[21]4.752570.741.57730.28
    下载: 导出CSV

    表 2  Mg3Sb2基Zintl材料热电性能汇总表

    Table 2.  Summary of thermoelectric properties of Mg3Sb2-based layered Zintl materials.

    时间材料ρ/(mΩ·cm)S/(μV·K–1)κ/(W·m–1·K–1)ZTT/KZTRT
    2006Mg3Sb2[83]292881.20.218750.001
    2013Mg3Bi0.2Sb1.8[76]404000.580.67500.01
    2014Mg3Pb0.2Sb1.8[48]28.62800.280.847730.03
    2015Mg2.9875Na0.0125Sb2[66]5.42000.950.67730.03
    2017Mg2.985Ag0.015Sb2[22]92050.650.517250.08
    2016Mg3.2Sb1.5Bi0.49Te0.01[67]5–2860.791.517160.2
    2016Mg3Sb1.48Bi0.48Te0.04[53]10–2050.731.67500.6
    2017Mg3.05Nb0.15Sb1.5Bi0.49Te0.01[9]4.35–2770.841.577000.31
    2017Mg3.1Co0.1Sb1.5Bi0.49Te0.01[69]5.1–2950.781.77730.4
    2018Mg3.15Mn0.05Sb1.5Bi0.49Te0.01[10]4.5–3020.791.857230.42
    2019Mg3+δSb1.5Bi0.49Te0.01:Mn0.01[78]4.5–2900.91.67730.65
    2019Mg3.05SbBi0.97Te0.03[74]1.7–2020.921.315000.71
    2019Mg3.02Y0.02Sb1.5Bi0.5[11]4.2–2700.761.87730.2
    2020Mg3.2Sb1.99Te0.01+GNP[23]6.4–3200.741.77500.18
    2021Mg3.17B0.03Sb1.5Bi0.49Te0.01[12]5.4–2960.691.817730.62
    下载: 导出CSV

    表 3  9–4+x–9型层状Zintl材料热电性能汇总表

    Table 3.  Summary of thermoelectric properties of 9–4+x–9 type layered Zintl materials.

    时间材料ρ/(mΩ·cm)S/(μV·K–1)κ/(W·m–1·K–1)ZTT/KZTRT
    2014Yb9Mn4.2Sb9[87]7.91850.580.79500.035
    2015Eu9Cd3.75Ag1.42Sb9[91]2.0851.00.327500.03
    2016Ca9Zn4.35Cu0.15Sb9[89]3.01400.80.728730.1
    2017Ca9Zn4.6Sb9[27]11.02700.481.18730.1
    2019Ca6.75Eu2.25Zn4.7Sb9[28]5.552000.531.057730.21
    2021Sr9Mg4.45Bi9[90]3.751350.650.577730.14 (323 K)
    下载: 导出CSV

    表 4  2-1-2型层状Zintl材料热电性能汇总表

    Table 4.  Summary of thermoelectric properties of 2-1-2 type layered Zintl materials.

    时间材料ρ/(mΩ·cm)S/(μV·K–1)κ/(W·m–1·K–1)ZTT/KZTRT
    2017Yb2CdSb2[92]51550.520.25230.23
    2017Yb1.64Eu0.36CdSb2[92]3.51700.60.75230.26
    2018Eu2ZnSb2[25]24.42900.420.67230.14
    2018Eu2Zn0.98Sb2[25]82200.4818230.22
    2020Eu2Zn0.97Ag0.06Sb2[24]102200.430.938230.2
    2020Eu2Zn0.95Ag0.06Sb2[24]5.31940.51.18230.2
    下载: 导出CSV

    表 5  1-1-1型层状Zintl材料热电性能汇总表

    Table 5.  Summary of thermoelectric properties of 1-1-1 type layered Zintl materials.

    时间材料ρ/(mΩ·cm)S/(μV·K–1)κ/(W·m-1·K–1)ZTT/KZTRT
    2018Ca0.85La0.15Ag0.89Sb[106]1.851201.30.528600.07
    2018Ca0.55Sr0.3La0.15Ag0.89Sb[106]1.61251.00.78230.1
    2020SrAgSb[26]0.951142.20.57730.07
    2020Sr1.01AgSb[26]1.271251.70.587730.1
    2020EuCuSb[26]0.64832.90.37730.03
    2020EuAgSb[26]0.74902.40.357730.05
    下载: 导出CSV
    Baidu
  • [1]

    Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC/Taylor & Francis)

    [2]

    Goldsmid H J 2010 Introduction to Thermoelectricity (Vol. 121) (Berlin, Heidelberg: Springer Berlin Heidelberg)

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [5]

    Ren Z F, Lan Y C, Zhang Q Y 2017 Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems (Boca Raton, FL: CRC Press)

    [6]

    Zintl E 1939 Angew. Chem. 52 1Google Scholar

    [7]

    Laves F 1941 Naturwissenschaften 29 244Google Scholar

    [8]

    Shuai J, Geng H Y, Lan Y C, Zhu Z, Wang C, Liu Z, Bao J M, Chu C W, Sui J H, Ren Z F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E4125Google Scholar

    [9]

    Shuai J, Mao J, Song S W, Zhu Q, Sun J F, Wang Y M, He R, Zhou J W, Chen G, Singh D J, Ren Z F 2017 Energy Environ. Sci. 10 799Google Scholar

    [10]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [11]

    Song S W, Mao J, Bordelon M, He R, Wang Y M, Shuai J, Sun J Y, Lei X B, Ren Z S, Chen S, Wilson S, Nielsch K, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 8 25Google Scholar

    [12]

    Chen X X, Zhu J B, Qin D D, Qu N, Xue W H, Wang Y M, Zhang Q, Cai W, Guo F K, Sui J H 2021 Science China-Materials 64 1761

    [13]

    Song S W, Mao J, Shuai J, Zhu H T, Ren Z, Saparamadu U, Tang Z J, Wang B, Ren Z F 2018 Appl. Phys. Lett. 112 092103Google Scholar

    [14]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873Google Scholar

    [15]

    Hu Y, Bux S K, Grebenkemper J H, Kauzlarich S M 2015 J. Mater. Chem. C 3 10566Google Scholar

    [16]

    Tan W, Liu Y, Zhu M, Zhu T, Zhao X, Tao X, Xia S 2017 Inorg. Chem. 56 1646Google Scholar

    [17]

    Baranets S, Bobev S 2020 Mater. Today Adv. 7 100094Google Scholar

    [18]

    Zevalkink A, Toberer E S, Zeier W G, Flage-Larsen E, Snyder G J 2011 Energy Environ. Sci. 4 510Google Scholar

    [19]

    Xia S Q, Bobev S 2008 J. Comput. Chem. 29 2125Google Scholar

    [20]

    Toberer E S, Zevalkink A, Crisosto N, Snyder G J 2010 Adv. Funct. Mater. 20 4375Google Scholar

    [21]

    Zhang Z W, Yan Y R, Li X F, Wang X Y, Li J, Chen C, Cao F, Sui J H, Lin X, Liu X J, Xie G Q, Zhang Q 2020 Adv. Energy Mater. 10 2001229Google Scholar

    [22]

    Song L R, Zhang J W, Iversen B B 2017 J. Mater. Chem. A 5 4932Google Scholar

    [23]

    Lin Y, Wood M, Imasato K, Kuo J J, Lam D, Mortazavi A N, Slade T J, Hodge S A, Xi K, Kanatzidis M G, Clarke D R, Hersam M C, Snyder G J 2020 Energy Environ. Sci. 13 4114Google Scholar

    [24]

    Chen C, Li X F, Xue W H, Bai F X, Huang Y, Yao H H, Li S, Zhang Z W, Wang X Y, Sui J H, Liu X J, Cao F, Wang Y M, Zhang Q 2020 Nano Energy 73 104771Google Scholar

    [25]

    Chen C, Xue W H, Li S, Zhang Z W, Li X F, Wang X Y, Liu Y J, Sui J H, Liu X J, Cao F, Ren Z F, Chu C W, Wang Y M, Zhang Q 2019 Proc. Natl. Acad. Sci. U.S.A. 116 2831Google Scholar

    [26]

    Zhang W M, Chen C, Yao H H, Xue W H, Li S, Bai F X, Huang Y F, Li X F, Lin X, Cao F, Sui J H, Wang S F, Yu B, Wang Y M, Liu X J, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [27]

    Ohno S, Aydemir U, Amsler M, Pöhls J H, Chanakian S, Zevalkink A, White M A, Bux S K, Wolverton C, Snyder G J 2017 Adv. Funct. Mater. 27 1606361Google Scholar

    [28]

    Chen C, Xue W H, Li X F, Lan Y C, Zhang Z W, Wang X Y, Zhang F, Yao H H, Li S, Sui J H, Han P D, Liu X J, Cao F, Wang Y M, Zhang Q 2019 ACS Appl. Mater. Interfaces 11 37741Google Scholar

    [29]

    Aydemir U, Zevalkink A, Ormeci A, Gibbs Z M, Bux S, Snyder G J 2015 Chem. Mater. 27 1622Google Scholar

    [30]

    Aydemir U, Zevalkink A, Ormeci A, Bux S, Snyder G J 2016 J. Mater. Chem. A 4 1867Google Scholar

    [31]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [32]

    Brown S R, Toberer E S, Ikeda T, Cox C A, Gascoin F, Kauzlarich S M, Snyder G J 2008 Chem. Mater. 20 3412Google Scholar

    [33]

    Toberer E S, Cox C A, Brown S R, Ikeda T, May A F, Kauzlarich S M, Snyder G J 2008 Adv. Funct. Mater. 18 2795Google Scholar

    [34]

    Wang X, Li J, Wang C, Zhou B Q, Zheng L T, Gao B, Chen Y, Pei Y Z 2018 Chem. Mater. 30 5339Google Scholar

    [35]

    Ohno S, Zevalkink A, Takagiwa Y, Bux S K, Snyder G J 2014 J. Mater. Chem. A 2 7478Google Scholar

    [36]

    Gascoin F, Ottensmann S, Stark D, Haïle S M, Snyder G J 2005 Adv. Funct. Mater. 15 1860Google Scholar

    [37]

    Cao Q G, Zhang H, Tang M B, Chen H H, Yang X X, Grin Y, Zhao J T 2010 J. Appl. Phys. 107 053714Google Scholar

    [38]

    Wang X J, Tang M B, Zhao J T, Chen H H, Yang X X 2007 Appl. Phys. Lett. 90 232107Google Scholar

    [39]

    May A F, McGuire M A, Singh D J, Ma J, Delaire O, Huq A, Cai W, Wang H 2012 Phys. Rev. B 85 035202Google Scholar

    [40]

    Cao Q, Zheng J, Zhang K, Ma G 2016 J. Alloys Compd. 680 278Google Scholar

    [41]

    Wang X, Li W, Zhou B, Sun C, Zheng L, Tang J, Shi X, Pei Y 2019 Mater. Today Phys. 8 123Google Scholar

    [42]

    Zheng L T, Li W, Wang X, Pei Y Z 2019 J. Mater. Chem. A 7 12773Google Scholar

    [43]

    Guo M C, Zhu J B, Guo F K, Zhang Q, Cai W, Sui J H 2020 Mater. Today Phys. 15 100270Google Scholar

    [44]

    Wang J, Guo M C, Zhu J B, Qin D D, Guo F kai, Zhang Q, Cai W, Sui J H 2020 J. Mater. Sci. Technol. 59 189Google Scholar

    [45]

    Saparamadu U, Tan X J, Sun J F, Ren Z S, Song S W, Singh D J, Shuai J, Jiang J, Ren Z F 2020 J. Mater. Chem. A 8 15760Google Scholar

    [46]

    Wang X J, Tang M B, Chen H H, Yang X X, Zhao J T, Burkhardt U, Grin Y 2009 Appl. Phys. Lett. 94 092106Google Scholar

    [47]

    Zhang H, Baitinger M, Tang M B, Man Z Y, Chen H H, Yang X X, Liu Y, Chen L, Grin Y, Zhao J T 2010 Dalton Trans. 39 1101Google Scholar

    [48]

    Bhardwaj A, Misra D K 2014 RSC Adv. 4 34552Google Scholar

    [49]

    Shuai J, Liu Z H, Kim H S, Wang Y, Mao J, He R, Sui J H, Ren Z F 2016 J. Mater. Chem. A 4 4312Google Scholar

    [50]

    Zhu M, Wu Z, Liu Q, Zhu T J, Zhao X B, Huang B, Tao X, Xia S Q 2018 J. Mater. Chem. A 6 11773Google Scholar

    [51]

    Yang C H, Guo K, Yang X X, Xing J J, Wang K, Luo J, Zhao J T 2019 ACS Appl. Energy Mater. 2 889Google Scholar

    [52]

    Zhang X, Gu H S, Zhang Y, Guo L J, Yang J T, Luo S J, Lu X, Chen K S, Chai H X, Wang G Y, Zhang X, Zhou X Y 2019 Chem. Eng. J. 374 589Google Scholar

    [53]

    Zhang J W, Song L R, Madsen G K H, Fischer K F F, Zhang W Q, Shi X, Iversen B B 2016 Nat. Commun. 7 10892Google Scholar

    [54]

    Shuai J, Kim H S, Liu Z H, He R, Sui J H, Ren Z F 2016 Appl. Phys. Lett. 108 183901Google Scholar

    [55]

    Gong J J, Hong A J, Shuai J, Li L, Yan Z B, Ren Z F, Liu J M 2016 Phys. Chem. Chem. Phys. 18 16566Google Scholar

    [56]

    Pomrehn G S, Zevalkink A, Zeier W G, van de Walle A, Snyder G J 2014 Angew. Chem. Int. Ed. 53 3422Google Scholar

    [57]

    Yu C, Zhu T J, Zhang S N, Zhao X B, He J, Su Z, Tritt T M 2008 J. Appl. Phys. 104 013705Google Scholar

    [58]

    Zhang H, Zhao J T, Grin Y, Wang X J, Tang M B, Man Z Y, Chen H H, Yang X X 2008 J. Chem. Phys. 129 164713Google Scholar

    [59]

    Zhang H, Fang L, Tang M B, Man Z Y, Chen H H, Yang X X, Baitinger M, Grin Y, Zhao J T 2010 J. Chem. Phys. 133 194701Google Scholar

    [60]

    Guo K, Cao Q G, Feng X J, Tang M B, Chen H H, Guo X, Chen L, Grin Y, Zhao J T 2011 Eur. J. Inorg. Chem. 2011 4043Google Scholar

    [61]

    Zevalkink A, Zeier W G, Cheng E, Snyder J, Fleurial J P, Bux S 2014 Chem. Mater. 26 5710Google Scholar

    [62]

    Zhang J, Song L, Iversen B B 2019 npj Comput. Mater. 5 76Google Scholar

    [63]

    Shuai J, Mao J, Song S W, Zhang Q Y, Chen G, Ren Z F 2017 Mater. Today Phys. 1 74Google Scholar

    [64]

    Bhardwaj A, Chauhan N S, Misra D K 2015 J. Mater. Chem. A 3 10777Google Scholar

    [65]

    Meng F C, Sun S S, Ma J L, Chronister C, He J, Li W 2020 Mater. Today Phys. 13 100217Google Scholar

    [66]

    Shuai J, Wang Y M, Kim H S, Liu Z H, Sun J Y, Chen S, Sui J H, Ren Z F 2015 Acta Mater. 93 187Google Scholar

    [67]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [68]

    Kanno T, Tamaki H, Yoshiya M, Uchiyama H, Maki S, Takata M, Miyazaki Y 2021 Adv. Funct. Mater. 31 2008469Google Scholar

    [69]

    Mao J, Shuai J, Song S W, Wu Y X, Dally R, Zhou J W, Liu Z H, Sun J F, Zhang Q Y, dela Cruz C, Wilson S, Pei Y Z, Singh D J, Chen G, Chu C W, Ren Z F 2017 Proc. Natl. Acad. Sci. U.S.A. 114 10548Google Scholar

    [70]

    Imasato K, Fu C G, Pan Y, Wood M, Kuo J J, Felser C, Snyder G J 2020 Adv. Mater. 32 1908218Google Scholar

    [71]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [72]

    Ohno S, Imasato K, Anand S, Tamaki H, Kang S D, Gorai P, Sato H K, Toberer E S, Kanno T, Snyder G J 2018 Joule 2 141Google Scholar

    [73]

    Kanno T, Tamaki H, Sato H K, Kang S D, Ohno S, Imasato K, Kuo J J, Snyder G J, Miyazaki Y 2018 Appl. Phys. Lett. 112 033903Google Scholar

    [74]

    Shi X M, Sun C, Bu Z L, Zhang X Y, Wu Y X, Lin S Q, Li W, Faghaninia A, Jain A, Pei Y Z 2019 Adv. Sci. 6 1802286Google Scholar

    [75]

    Shi X M, Zhao T T, Zhang X Y, Sun C, Chen Z W, Lin S Q, Li W, Gu H, Pei Y Z 2019 Adv. Mater. 31 1903387Google Scholar

    [76]

    Bhardwaj A, Rajput A, Shukla A K, Pulikkotil J J, Srivastava A K, Dhar A, Gupta G, Auluck S, Misra D K, Budhani R C 2013 RSC Adv. 3 8504Google Scholar

    [77]

    Shi X M, Wang X, Li W, Pei Y Z 2018 Small Methods 2 1800022Google Scholar

    [78]

    Shu R, Zhou Y C, Wang Q, Han Z J, Zhu Y B, Liu Y, Chen Y X, Gu M, Xu W, Wang Y, Zhang W Q, Huang L, Liu W S 2019 Adv. Funct. Mater. 29 1807235Google Scholar

    [79]

    Hu L P, Zhu T J, Liu X H, Zhao X B 2014 Adv. Funct. Mater. 24 5211Google Scholar

    [80]

    Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X 2015 Adv. Energy Mater. 5 1500411Google Scholar

    [81]

    Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X, Hu L, Ying P, He J, Zhao X 2016 J. Materiomics 2 141Google Scholar

    [82]

    Imasato K, Kang S D, Snyder G J 2019 Energy Environ. Sci. 12 965Google Scholar

    [83]

    Condron C L, Kauzlarich S M, Gascoin F, Snyder G J 2006 J. Solid State Chem. 179 2252Google Scholar

    [84]

    Brechtel E, Cordier G, Schafer H 1979 Z. Naturforsch. , B:Chem. Sci. 34 1229Google Scholar

    [85]

    Kim S J, Salvador J, Bilc D, Mahanti S D, Kanatzidis M G 2001 J. Am. Chem. Soc. 123 12704Google Scholar

    [86]

    Bobev S, Thompson J D, Sarrao J L, Olmstead M M, Hope H, Kauzlarich S M 2004 Inorg. Chem. 43 5044Google Scholar

    [87]

    Bux S K, Zevalkink A, Janka O, Uhl D, Kauzlarich S, Snyder J G, Fleurial J P 2014 J. Mater. Chem. A 2 215Google Scholar

    [88]

    Kazem N, Zaikina J V, Ohno S, Snyder G J, Kauzlarich S M 2015 Chem. Mater. 27 7508Google Scholar

    [89]

    Wu Z, Li J, Li X, Zhu M, Wu K C, Tao X T, Huang B B, Xia S Q 2016 Chem. Mater. 28 6917Google Scholar

    [90]

    Zhang J, Liu Q, Liu K F, Tan W J, Liu X C, Xia S Q 2021 Inorg. Chem. 60 4026Google Scholar

    [91]

    Liu X C, Wu Z, Xia S Q, Tao X T, Bobev S 2015 Inorg. Chem. 54 947Google Scholar

    [92]

    Cooley J A, Promkhan P, Gangopadhyay S, Donadio D, Pickett W E, Ortiz B R, Toberer E S, Kauzlarich S M 2018 Chem. Mater. 30 484Google Scholar

    [93]

    Xia S Q, Bobev S 2007 J. Am. Chem. Soc. 129 4049Google Scholar

    [94]

    Wilson D K, Saparov B, Bobev S 2011 Z. Anorg. Allg. Chem. 637 2018Google Scholar

    [95]

    Wang J, Xia S Q, Tao X T, Schäfer M C, Bobev S 2013 J. Solid State Chem. 205 116Google Scholar

    [96]

    Yan J, Gorai P, Ortiz B, Miller S, Barnett S A, Mason T, Stevanović V, Toberer E S 2015 Energy Environ. Sci. 8 983Google Scholar

    [97]

    Ovchinnikov A, Saparov B, Xia S Q, Bobev S 2017 Inorg. Chem. 56 12369Google Scholar

    [98]

    Sun J F, Singh D J 2017 J. Mater. Chem. A 5 8499Google Scholar

    [99]

    Ma H Q, Li G D, Zhang X L, Huang H J, Duan B, Zhai P C 2020 J. Alloys Compd. 843 155981Google Scholar

    [100]

    Li Y, Chen J X, Cai P W, Wen Z H 2018 J. Mater. Chem. A 6 4948Google Scholar

    [101]

    Yao H H, Chen C, Xue W H, Bai F X, Cao F, Lan Y C, Liu X J, Wang Y M, Singh D J, Lin X, Zhang Q 2021 Sci. Adv. 7 eabd6162Google Scholar

    [102]

    Merlo F, Pani M, Fornasini M L 1990 J. Less-Common Met. 166 319Google Scholar

    [103]

    Romaka V V, Falmbigl M, Grytsiv A, Rogl P 2014 J. Alloys Compd. 585 287Google Scholar

    [104]

    Altayeb A, Sondezi B M, Tchoula Tchokonté M B, Strydom A M, Doyle T B, Kaczorowski D 2017 AIP Adv. 7 055714Google Scholar

    [105]

    Chen S C, Lee J R, Syu K J, Lee W H 2014 Solid State Commun. 195 6Google Scholar

    [106]

    Guo J, Zhu M, Li X, Tao X T, Xia S Q 2018 Inorg. Chem. Front. 5 1902Google Scholar

    [107]

    May A F, Toberer E S, Snyder G J 2009 J. Appl. Phys. 106 013706Google Scholar

    [108]

    Pan Y, Fan F R, Hong X, He B, Le C, Schnelle W, He Y, Imasato K, Borrmann H, Hess C, Buechner B, Sun Y, Fu C, Snyder G J, Felser C 2020 Adv. Mater. 33 2003168Google Scholar

    [109]

    Liu Q, Liu X C, Liu K F, Zhang J, Xia S Q 2020 J. Alloys Compd. 847 156551Google Scholar

    [110]

    Balvanz A, Qu J X, Baranets S, Ertekin E, Gorai P, Bobev S 2020 Chem. Mater. 32 10697Google Scholar

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能.  , 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化.  , 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [3] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能.  , 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [4] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望.  , 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能.  , 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能.  , 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能.  , 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能.  , 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究.  , 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [10] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究.  , 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [11] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能.  , 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [12] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性.  , 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能.  , 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理.  , 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征.  , 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [18] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能.  , 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  11313
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-06-19
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map