搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属Pt薄膜上二氧化钒的制备及其电致相变性能研究

邱东鸿 文岐业 杨青慧 陈智 荆玉兰 张怀武

引用本文:
Citation:

金属Pt薄膜上二氧化钒的制备及其电致相变性能研究

邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu
PDF
导出引用
  • 通过引入SiO2氧化物缓冲层, 在金属Pt电极上利用射频磁控溅射技术成功制备出高质量的VO2薄膜. 详细研究了SiO2厚度对VO2薄膜的晶体结构、微观形貌和绝缘体–金属相变(MIT)性能的影响. 结果表明厚度0.2 μm以上的SiO2缓冲层能够有效 消除VO2薄膜与金属薄膜之间的巨大应力, 制备出具有明显相变特性的VO2薄膜. 当缓冲层达到0.7 μm以上, 获得的薄膜具有明显的(011)晶面择优取向, 表面平整致密, 相变前后电阻率变化达到3个数量级以上. 基于该技术制备了Pt-SiO2/VO2-Au三明治结构, 通过在垂直膜面方向施加很小的驱动电压, 观察到明显的阶梯电流跳跃, 证实实现了电致绝缘体–金属相变过程. 该薄膜制备工艺简单, 性能稳定, 器件结构灵活可应用于集成式电控功能器件.
    High-quality VO2 thin films are deposited on the metal platinum (Pt) electrode buffered by silicon dioxide (SiO2) using radio frequency magnetron sputtering. The effect of the thickness of SiO2 on the the crystal structure, morphology and metal-insulator transition (MIT) performance of the films are discussed. Results show that SiO2 buffer layer with a thickness of 0.2 μm can effectively eliminate huge stress between the VO2 film and the metal film; and the VO2 thin film with the distinct MIT are deposited. When the buffer layer reaches more than 0.7 μm, the VO2 film has a distinct (011) preferred orientation, the smooth surface and compact nanostructure, and the resistance change reaches more than three orders of magnitude. At the same time, Pt-SiO2/VO2-Au sandwiched structure is achieved to test the current versus voltage curves, in which can be seen several distinct steps of current caused by the voltage perpendicular to the plane of a VO2 film. The result confirms the electrically-driven metal-insulator transition. Due to the high-quality VO2 and the flexible device structure, the VO2/Pt-SiO2 can be widely used for large-scale integrated electronic control devices.
    • 基金项目: 国家自然科学基金重点项目 (批准号: 61131005)、教育部科学技术研究重大项目 (批准号: 313013)、国家高技术研究发展技术(863计划) (批准号: 2011AA010204)、教育部新世纪优秀人才资助计划 (批准号: NCET-11-0068)、四川省杰出青年学术技术带头人计划 (批准号: 2011JQ0001)、高校博士点专项科研基金 (批准号: 20110185130002)、中央高校基本科研业务费(批准号: ZYGX2010J034) 和中国工程物理研究院太赫兹科学技术基金(批准号: CAEPTHZ201207)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 61131005), Key Project of Chinese Ministry of Education (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), the Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性.  , 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [2] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性.  , 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [3] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器.  , 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [4] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究.  , 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [5] 郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒. 基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性.  , 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [6] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究.  , 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [7] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [8] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计.  , 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型.  , 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [10] 高旺, 胡明, 后顺保, 吕志军, 武斌. 氧化法结合快速热处理制备VOx薄膜及其性质研究.  , 2013, 62(1): 018104. doi: 10.7498/aps.62.018104
    [11] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型.  , 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [12] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究.  , 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [13] 武斌, 胡明, 后顺保, 吕志军, 高旺, 梁继然. 快速热处理制备相变氧化钒薄膜及其特性研究.  , 2012, 61(18): 188101. doi: 10.7498/aps.61.188101
    [14] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型.  , 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [15] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型.  , 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [16] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压.  , 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型.  , 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [18] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究.  , 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [19] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型.  , 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型.  , 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
计量
  • 文章访问数:  7454
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-09
  • 修回日期:  2013-08-01
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map