-
We investigate theoretically the electromagnetic propagation properties of graphene plasmons in a comb-like dielectric-graphene-dielectric (DGD) waveguide. The effective index of surface plasmon mode supported by the waveguide is analysed numerically, and it is found that the effective refractive index increases with the refractive index of the dielectric and decreases with Fermi energy of the graphene sheet. For a comb-like DGD waveguide with a finite branch length, a subwavelength plasmon filter can be formed by Fabry-Perot resonance caused by the reflection of the guided mode at the branch. The central frequencies of the gaps can be changed by varying the length of the branch, Fermi energy, the refractive index of the dielectric and the layer number of graphene sheets. The analytic and simulated result reveals that a novel nanometric plasmonic filter in such a comb-shaped waveguide can be realized with ultracompact size in a length of a few hundred nanometers in the mid-infrared range. We find that the frequencies of the stopband increase with Fermi energy and the layer number of graphene sheets, while will they decrease nonlinearly with the length of the branch and the refractive index of the dielectric. In addition, the width of the gap can be increased with the number of comb branches. Such electromagnetic properties could be utilized to develop ultracompact photonic filters for high integration.
-
Keywords:
- graphene /
- surface plasmon /
- Fabry-Perot resonance
[1] Yang R, Lu Z 2012 Int. J. Opt.2012 258013
[2] Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226
[3] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795
[4] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259
[5] Low T, Avouris P 2014 ACS Nano 8 1086
[6] Vakil A, Engheta N 2011 Science332 1291
[7] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[8] Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271
[9] Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112
[10] Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114
[11] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203
[12] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505
[13] Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664
[14] Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486
[15] Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]
[16] Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111
[17] Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39
[18] Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628
[19] Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]
[20] Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411
[21] Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107
[22] Lin X S, Huang X G 2008 Opt. Lett. 33 2874
[23] Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054
[24] Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434
-
[1] Yang R, Lu Z 2012 Int. J. Opt.2012 258013
[2] Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226
[3] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795
[4] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259
[5] Low T, Avouris P 2014 ACS Nano 8 1086
[6] Vakil A, Engheta N 2011 Science332 1291
[7] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[8] Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271
[9] Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112
[10] Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114
[11] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203
[12] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505
[13] Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664
[14] Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486
[15] Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]
[16] Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111
[17] Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39
[18] Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628
[19] Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]
[20] Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411
[21] Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107
[22] Lin X S, Huang X G 2008 Opt. Lett. 33 2874
[23] Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054
[24] Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434
Catalog
Metrics
- Abstract views: 7415
- PDF Downloads: 368
- Cited By: 0