-
Surface plasmon excited by metallic grating integrated on metal-semiconductor-metal can greatly improve the absorption of devices. In order to deeply explore the excitation and resonant discipline of surface plasmon, a design of metal-semiconductor-metal based on ultra-thin germanium is proposed. By using finite difference time domain (FDTD) method, the effects of grating period, grating depth, grating space, and thickness of the active layer on the performance of surface plasmon resonance supported device are investigated in detail. The structure parameters of the device are optimized, and the mechanism of surface plasmon excited by each interface as well as spectrum absorption enhanced by surface plasmon resonance is analyzed in detail. Simulation results show that the germanium device with an ultra-thin active layer of 400 nm has a high absorption in the communication band, especially at the wavelength of 1550 nm the normalized spectral absorption can be as high as 53.77% with an enhancement factor of 7.22. Surface plasmon resonance can greatly improve the optical response of high-speed optoelectronic device, thus an efficient way is provided to solve the trade-off between photodetector responsivity and speed of the device.
-
Keywords:
- surface plasmon /
- germanium photodetector /
- finite difference time domain (FDTD) simulation
[1] Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527
[2] Huang Z H 2006 Ph.D. Dissertation (Texas: The University of Texas at Austin)
[3] Palik E D 1985 Handbook of Optical Constants of Solids (Vol.1) (New York: Academic) pp467-568
[4] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[5] Schuller J A, Barnard E S, CAI W, Jun Y C, White J S, Brongersma M I 2010 Nat. Mat. 9 193
[6] Schaadt D, Feng B, Yu E 2005 Appl. Phys. Lett. 80 063106
[7] Tang L, Kocabas S E, Latif S, Okyay A K, Sebastien D, Gagnon L, Saraswat K C, Miller D A B 2008 Nat. Photon. 2 226
[8] Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501
[9] Das N, Karar A, Vasiliev M, Tan C L, Alameh K, Lee Y T 2011 Opt. Comm. 284 1694
[10] Tan C L, Lysak V V, Das N, Karar A, Alameh K, Lee Y T 2010 Proceedings of 10th IEEE Conference on the Nanotechnology (IEEE-NANO), Korea, Aug. 17-20, 2010 p849
[11] Ren F F, Ang K W, Song J F, Fang Q, Yu M B, Lo G Q, Kwong D L 2010 Appl. Phys. Lett. 97 091102
[12] Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289
[13] Eryilmaz S B, Tidin O, Okyay A K 2012 IEEE Photon. Tech. Lett. 24 548
[14] Masouleh F F, Das N, Mashayekhih R 2012 Proceedings of the Optical Interconnects Conference, New Maxico, May 20-23, 2012 p108
[15] Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 55 3464]
[16] Liu S B, Zhu C X, Yuan N C 2006 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 54 2804]
[17] Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44-46
[18] Bai W L, Guo B S, Cai L K, Gan Q Q, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰 2009 58 8021]
[19] Crouse D, Keshavareddy P 2005 Opt. Exp. 13 7760
[20] White J S, Veronis G, Yu Z, Barnard E S, Chandran A, Fan S H, Brongersma M L 2009 Opt. Lett. 34 686
[21] Bouchon P, Pardo F, Potirer B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109
[22] Han Z, Forsberg E, He S 2007 IEEE Photon. Tech. Lett. 19 91
-
[1] Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527
[2] Huang Z H 2006 Ph.D. Dissertation (Texas: The University of Texas at Austin)
[3] Palik E D 1985 Handbook of Optical Constants of Solids (Vol.1) (New York: Academic) pp467-568
[4] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[5] Schuller J A, Barnard E S, CAI W, Jun Y C, White J S, Brongersma M I 2010 Nat. Mat. 9 193
[6] Schaadt D, Feng B, Yu E 2005 Appl. Phys. Lett. 80 063106
[7] Tang L, Kocabas S E, Latif S, Okyay A K, Sebastien D, Gagnon L, Saraswat K C, Miller D A B 2008 Nat. Photon. 2 226
[8] Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501
[9] Das N, Karar A, Vasiliev M, Tan C L, Alameh K, Lee Y T 2011 Opt. Comm. 284 1694
[10] Tan C L, Lysak V V, Das N, Karar A, Alameh K, Lee Y T 2010 Proceedings of 10th IEEE Conference on the Nanotechnology (IEEE-NANO), Korea, Aug. 17-20, 2010 p849
[11] Ren F F, Ang K W, Song J F, Fang Q, Yu M B, Lo G Q, Kwong D L 2010 Appl. Phys. Lett. 97 091102
[12] Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289
[13] Eryilmaz S B, Tidin O, Okyay A K 2012 IEEE Photon. Tech. Lett. 24 548
[14] Masouleh F F, Das N, Mashayekhih R 2012 Proceedings of the Optical Interconnects Conference, New Maxico, May 20-23, 2012 p108
[15] Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 55 3464]
[16] Liu S B, Zhu C X, Yuan N C 2006 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 54 2804]
[17] Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44-46
[18] Bai W L, Guo B S, Cai L K, Gan Q Q, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰 2009 58 8021]
[19] Crouse D, Keshavareddy P 2005 Opt. Exp. 13 7760
[20] White J S, Veronis G, Yu Z, Barnard E S, Chandran A, Fan S H, Brongersma M L 2009 Opt. Lett. 34 686
[21] Bouchon P, Pardo F, Potirer B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109
[22] Han Z, Forsberg E, He S 2007 IEEE Photon. Tech. Lett. 19 91
Catalog
Metrics
- Abstract views: 7116
- PDF Downloads: 876
- Cited By: 0