Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of improved characteristics of pentacene thin-film transistor with an embedded copper oxide layer

Nie Guo-Zheng Zou Dai-Feng Zhong Chun-Liang Xu Ying

Citation:

Analysis of improved characteristics of pentacene thin-film transistor with an embedded copper oxide layer

Nie Guo-Zheng, Zou Dai-Feng, Zhong Chun-Liang, Xu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Organic thin-film transistor (OTFT) based on pentacene semiconductor with an embedded copper oxide (CuO) thin layer is investigated. With the 3 nm-thick CuO layer embedded in the pentacene semiconductor, the drain current of the OTFT increases more than 3 times compared with that of pentacene organic field-effect transistor without CuO layer, and the absolute threshold voltage reduces from -21 V to -7.9 V. The hole mobility and current on/off ratio are much improved. It is interpreted by the mechanism based on the analysis of the interface charge transfer between pentacene layer and CuO layer. Results of X-ray photoelectron reveal electron transfer from pentacene to high work function CuO and the formation of charge transfer (CT) complexes based on electron transfer near the contact of CuO and pentacene. The CT complexes between pentacene layer and CuO layer could reduce the exponential density of state near the band edge of pentacene and the pentacene bulk hole trap density, and enhance the pentacene bulk hole carriers injection, which leads to the improvement of the field-effect mobility of OTFT with CuO layer. Electrons are transfered from the highest occupied molecular orbital of pentacene to the thin CuO layer which can generate holes in pentacene. The generated hole has the same effect as that with applying negative gate voltage which influences the threshold voltage. The drain current of the device increases and the threshold voltage shifts from -21 V to -7.9 V. Therefore, the thin CuO layer that is directly embedded in the organic semiconductor layer, serves as the hole-injection layer, which is responsible for reducing the contact barrier of OTFT with CuO layer.
      Corresponding author: Nie Guo-Zheng, gzhnie@hnust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447212, 11204076), the Scientific Research Fund of Hunan provincial Education Department, China (Grant No. 13C323), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3060).
    [1]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [2]

    Crone B K, Dodabalapur A, Sarpeshkar R, Filas R W, Lin Y Y, Bao Z, O'Neill J H, Li W, Katz H E 2001 J. Appl. Phys. 89 5125

    [3]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [4]

    Yu X G, Yu J S, Huang W, Zeng H J 2012 Chin. Phys. B 21 117307

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [聂国政, 彭俊彪, 周仁龙 2011 60 127304]

    [6]

    Duan P F, Hu Y S, Guo X Y, Liu X Y, Fan Y 2015 Chin. J. Lumin. 36 480 (in Chinese) [端鹏飞, 胡永生, 郭晓阳, 刘星元, 范翊 2015 发光学报 36 480]

    [7]

    Nausieda I, Ryu K K, He D D, Akinwande A I, Bulovic V, Sodini C G 2010 IEEE Trans. Electron Devices 57 3027

    [8]

    Chung Y, Johnson O, Deal M, Nishi Y, Murmann B, Bao Z 2012 Appl. Phys. Lett. 101 063304

    [9]

    Kergoat L, Herlogsson L, Piro B, Pham M C, Horowitz G, Crispin X, Berggren M 2012 PNAS 109 8394

    [10]

    Moon H, Im D, Yoo S, Menber 2013 IEEE Electron Device Lett. 34 1014

    [11]

    Wu D, Zhang Q, Tao M 2006 Phys. Rev. B 73 235206

    [12]

    Murdoch G B, Greiner M, Helander M G, Wang Z B, Lu Z H 2008 Appl. Phys. Lett. 93 083309

    [13]

    Koffyberg F P, Benko F A 1982 J. Appl. Phys. 5 1173

    [14]

    Park J W, Baeg J, Ghim J, Kang S J, Park J H, Kim D Y 2007 Electrochem. Solid-State Lett. 10 H340

    [15]

    Koch N, Ghijsen J, Johnson R L, Kahn A, Ghijsen J, Pireaux J J, Schwartz J, Johnson R L, Elschner A 2003 Appl. Phys. Lett. 82 70

    [16]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [17]

    Walzer K, Maennig B, Pfeiffer M, Leo K 2007 Chem. Rev. 107 1233

    [18]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [19]

    Minari T, Miyadera T, Tsukagoshi K, Aoyagi Y, Ito H 2007 Appl. Phys. Lett. 91 053508

    [20]

    Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P 2001 Phys. Rev. B 64 195208

    [21]

    Yoneya N, Noda Hirai M, Wada M, Kasahara J 2004 Appl. Phys. Lett. 85 4663

  • [1]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [2]

    Crone B K, Dodabalapur A, Sarpeshkar R, Filas R W, Lin Y Y, Bao Z, O'Neill J H, Li W, Katz H E 2001 J. Appl. Phys. 89 5125

    [3]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [4]

    Yu X G, Yu J S, Huang W, Zeng H J 2012 Chin. Phys. B 21 117307

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [聂国政, 彭俊彪, 周仁龙 2011 60 127304]

    [6]

    Duan P F, Hu Y S, Guo X Y, Liu X Y, Fan Y 2015 Chin. J. Lumin. 36 480 (in Chinese) [端鹏飞, 胡永生, 郭晓阳, 刘星元, 范翊 2015 发光学报 36 480]

    [7]

    Nausieda I, Ryu K K, He D D, Akinwande A I, Bulovic V, Sodini C G 2010 IEEE Trans. Electron Devices 57 3027

    [8]

    Chung Y, Johnson O, Deal M, Nishi Y, Murmann B, Bao Z 2012 Appl. Phys. Lett. 101 063304

    [9]

    Kergoat L, Herlogsson L, Piro B, Pham M C, Horowitz G, Crispin X, Berggren M 2012 PNAS 109 8394

    [10]

    Moon H, Im D, Yoo S, Menber 2013 IEEE Electron Device Lett. 34 1014

    [11]

    Wu D, Zhang Q, Tao M 2006 Phys. Rev. B 73 235206

    [12]

    Murdoch G B, Greiner M, Helander M G, Wang Z B, Lu Z H 2008 Appl. Phys. Lett. 93 083309

    [13]

    Koffyberg F P, Benko F A 1982 J. Appl. Phys. 5 1173

    [14]

    Park J W, Baeg J, Ghim J, Kang S J, Park J H, Kim D Y 2007 Electrochem. Solid-State Lett. 10 H340

    [15]

    Koch N, Ghijsen J, Johnson R L, Kahn A, Ghijsen J, Pireaux J J, Schwartz J, Johnson R L, Elschner A 2003 Appl. Phys. Lett. 82 70

    [16]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [17]

    Walzer K, Maennig B, Pfeiffer M, Leo K 2007 Chem. Rev. 107 1233

    [18]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [19]

    Minari T, Miyadera T, Tsukagoshi K, Aoyagi Y, Ito H 2007 Appl. Phys. Lett. 91 053508

    [20]

    Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P 2001 Phys. Rev. B 64 195208

    [21]

    Yoneya N, Noda Hirai M, Wada M, Kasahara J 2004 Appl. Phys. Lett. 85 4663

  • [1] Zhu Yu-Hao, Yuan Xiang, Wu Yong, Wang Jian-Guo. Non-radiative charge transfer process of proton impcating B atom. Acta Physica Sinica, 2023, 72(16): 163401. doi: 10.7498/aps.72.20230470
    [2] Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei. Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance. Acta Physica Sinica, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [3] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [4] Lei Da, Menggen Qi-Qi-Ge, Zhang He-Liang, Zhi Ying-Biao. Field emission properties from a carbon nanotube array with parallel grid. Acta Physica Sinica, 2013, 62(24): 248502. doi: 10.7498/aps.62.248502
    [5] Wu Zheng, Wang Chen, Yan Guang-Ming, Liu Guan-Zhou, Li Cheng, Huang Wei, Lai Hong-Kai, Chen Song-Yan. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact. Acta Physica Sinica, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [6] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [8] Medvedeva I, Chen Shun-Sheng, Huang Chang, Wang Rui-Long, Yang Chang-Ping. The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface. Acta Physica Sinica, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [9] Nie Guo-Zheng, Peng Jun-Biao, Zhou Ren-Long. Organic field-effect transistor with low-cost CuI/Al bilayer electrode. Acta Physica Sinica, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [10] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. Processes of charge transport and transfer in dye-sensitized solar cell by electrical and optical modulation techniques. Acta Physica Sinica, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [11] Chen Yue-Ning, Xu Zheng, Zhao Su-Ling, Sun Qin-Jun, Yin Fei-Fei, Dong Yu-Hang. Research on least-squares fitting calculation of the field-effect mobility. Acta Physica Sinica, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [12] Zou Jian-Hua, Lan Lin-Feng, Xu Rui-Xia, Yang Wei, Peng Jun-Biao. Integration of organic thin-film transistor and polymer light-emitting diodes. Acta Physica Sinica, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [13] Sun Qin-Jun, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Gao Li-Yan, Tian Xue-Yan, Wang Yong-Sheng. Contact effect in organic thin film transistors. Acta Physica Sinica, 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [14] Yuan Guang-Cai, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Xu Na, Sun Qin-Jun, Xu Xu-Rong. Study of the characteristics of organic thin film transistors with phenyltrimethoxysilane buffer under low gate modulation voltage. Acta Physica Sinica, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [15] Yuan Guang-Cai, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Jiang Wei-Wei, Huang Jin-Zhao, Song Dan-Dan, Zhu Hai-Na, Huang Jin-Ying, Xu Xu-Rong. Study of the characteristics of organic thin film transistors based on different active layers of pentacene and CuPc thin films. Acta Physica Sinica, 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [16] Zhang Zhe, Zhang Jie, Li Yu-Tong, Hao Zuo-Qiang, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Measurements of electric resistivity of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [17] Xue Wei-Dong, Zhu Zheng-He. Thermodynamics stability for ground state CUO. Acta Physica Sinica, 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
    [18] Xue Wei-Dong, Wang Hong-Yan, Zhu Zheng-He, Zhang Guang-Feng, Zhou Le-Xi, Chen Chang-An, Sun Ying. . Acta Physica Sinica, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [19] WANG YIN-YUE, ZHEN CONG-MIAN, GONG HENG-XIANG, YAN ZHI-JUN, WANG YA-FAN, LIU XUE-QIN, YANG YING-HU, HE SHAN-HU. MEASUREMENT OF THE SPECIFIC CONTACT RESISTANCE OF Au/Ti/p-DIAMOND USING TRANSMIS SION LINE MODEL. Acta Physica Sinica, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [20] . Acta Physica Sinica, 1956, 12(3): 271-274. doi: 10.7498/aps.12.271
Metrics
  • Abstract views:  6103
  • PDF Downloads:  298
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2015
  • Accepted Date:  08 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map