搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种平行栅碳纳米管阵列阴极的场发射特性研究

雷达 孟根其其格 张荷亮 智颖飙

引用本文:
Citation:

一种平行栅碳纳米管阵列阴极的场发射特性研究

雷达, 孟根其其格, 张荷亮, 智颖飙

Field emission properties from a carbon nanotube array with parallel grid

Lei Da, Menggen Qi-Qi-Ge, Zhang He-Liang, Zhi Ying-Biao
PDF
导出引用
  • 建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高.
    One of the models for the carbon nanotube array with parallel grids is proposed. The actual electric field at the top of the carbon nanotubes and the field enhancement factor are calculated analytically with the image charge method and floated sphere model. The effects of the geometrical parameters of the device and the contact resistance on actual electric field, field enhancement factor at the top of carbon nanotubes, and the field emission current from the gated carbon nanotubes are investigated. The calculation results show that the carbon nanotube array has the best density for field emission when the intertube distance is twice the height of carbon nanotube. The actual electric field and the field emission current from gated carbon nanotube are greatly reduced by the contact resistance. When the contact resistance is larger than 800 kΩ, the emission current from carbon nanotube tends to be zero and the field emission properties are improved via modulating gate voltage.
    • 基金项目: 国家自然科学基金(批准号:61261004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61261004).
    [1]

    Ijima S, Ichihashi T 1993 Nature 363 603

    [2]

    Milne W I, Teo K B K, Chhowalla M, Amaratunga G A J, Pribat D, Legagneux P, Pirio G, Vu T B, Semet V 2002 Curt. Appl. Phys. 2 509

    [3]

    Chen Q, Dai L 2001 J. Nanosci. Nanotech. 1 43

    [4]

    Xu X P, Brandes G R 1999 Appl. Phys. Lett. 74 2549

    [5]

    Lee Y H, Jang Y T, Kim D H, Ahn J H, Ju B 200l Adv. Mater. 13 479

    [6]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 216101 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝,许宁生, 鄢扬 2012 61 216101]

    [7]

    Park J H, Son G H, Moon J S, Han J H, Berdinsky A S, Kuvshinov D G, Yoo J B, Park C Y 2005 J. Vac. Sci. Technol. B 23 749

    [8]

    Chen L F, Wang L, Yu X G, Zhang S J, Li D, Xu C 2013 Appl. Surf. Sci. 265 187

    [9]

    Ye Y, Xiao X J, Guo T L, Li W Z, Jiang Y D 2012 J. Functional Mater. 43 1221 (in Chinese) [叶芸, 肖晓晶, 郭太良, 李威志, 蒋亚东 2012 功能材料 43 1221]

    [10]

    Chung D S, Park S H, Lee H W, Choi J H, Cha S N, Kim J W, Jang J E, Min K W, Cho S H, Yoon M J, Lee J S, Lee C K, Yoo J H, Kim J M, Jung J E, Jin Y W, Park Y J, You J B 2002 Appl. Phys. Lett. 80 4045

    [11]

    Gao Y B, Zhang X B Lei W, Liu M, Zhang Y N, den Daniel E 2005 Appl. Surf. Sci. 243 19

    [12]

    Zhang Y A, Lin J Y, Wu C X, Zheng Y, Lin Z X, Guo T L 2011 J. Functional Mater. 42 1130 (in Chinese) [张永爱, 林金阳, 吴朝兴, 郑勇, 林志贤, 郭太良 2011 功能材料 42 1130]

    [13]

    Zhao X X, Zhang G M 2002 J. Vac. Sci. Technol. 22 358 (in Chinese) [赵晓雪, 张耿民 2002 真空科学与技术学报 22 358]

    [14]

    Nicolaescu D, Filip V, Kanemaru S, Itoh J 2003 J. Vac. Sci. Technol. B 21 366

    [15]

    Lei D, Wang W B, Zeng L Y, Liang J Q 2009 Acta Phys. Sin. 58 3384 (in Chinese) [雷达, 王维彪, 曾乐勇, 梁静秋 2009 58 3384]

    [16]

    Lei D, Zeng L Y, Xia Y X, Chen S, Liang J Q, Wang W B 2007 Acta Phys. Sin. 56 6616 (in Chinese) [雷达, 曾乐勇, 夏玉学, 陈松, 梁静秋, 王维彪 2007 56 6616]

    [17]

    Zhu Y B, Wang W L, Liao K J 2002 Acta Phys. Sin. 51 2336 (in Chinese) [朱亚波, 王万录, 廖克俊 2002 51 2336]

    [18]

    Dai J F, Mu X W, Qiao X W, Chen X X, Wang J H 2010 Chin. Phys. B 19 057201

    [19]

    Wang X Q, Li L, Chu N J, Jin H X, Ge H L 2008 Acta Phys. Sin. 57 7173 (in Chinese) [王新庆, 李良, 褚宁杰, 金红晓, 葛洪良 2008 57 7173]

    [20]

    Pan J Y, Zhang W Y, Gao Y L 2010 Acta Phys. Sin. 59 8763 (in Chinese) [潘金艳, 张文彦, 高云龙 2010 59 8763]

    [21]

    Fowler R H, Nordheim D L 2003 Proc. Roy. Soc. (London) A 119 173

    [22]

    Miller H C 1967 J. Appl. Phys. 38 1450

    [23]

    Wang X Q, Wang M, Li Z H, Xu Y B, He P M 2005 Ultramicroscopy 102 181

    [24]

    L W H, Zhang S 2012 Acta Phys. Sin. 61 018801 (in Chinese) [吕文辉, 张帅 2012 61 018801]

    [25]

    She J C, Xu N S, Deng S Z, Chen J, Bishpo H, Huq S E, Wang L, Zhong D Y, Wang E G 2003 Appl. Phys. Lett. 83 2671

  • [1]

    Ijima S, Ichihashi T 1993 Nature 363 603

    [2]

    Milne W I, Teo K B K, Chhowalla M, Amaratunga G A J, Pribat D, Legagneux P, Pirio G, Vu T B, Semet V 2002 Curt. Appl. Phys. 2 509

    [3]

    Chen Q, Dai L 2001 J. Nanosci. Nanotech. 1 43

    [4]

    Xu X P, Brandes G R 1999 Appl. Phys. Lett. 74 2549

    [5]

    Lee Y H, Jang Y T, Kim D H, Ahn J H, Ju B 200l Adv. Mater. 13 479

    [6]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 216101 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝,许宁生, 鄢扬 2012 61 216101]

    [7]

    Park J H, Son G H, Moon J S, Han J H, Berdinsky A S, Kuvshinov D G, Yoo J B, Park C Y 2005 J. Vac. Sci. Technol. B 23 749

    [8]

    Chen L F, Wang L, Yu X G, Zhang S J, Li D, Xu C 2013 Appl. Surf. Sci. 265 187

    [9]

    Ye Y, Xiao X J, Guo T L, Li W Z, Jiang Y D 2012 J. Functional Mater. 43 1221 (in Chinese) [叶芸, 肖晓晶, 郭太良, 李威志, 蒋亚东 2012 功能材料 43 1221]

    [10]

    Chung D S, Park S H, Lee H W, Choi J H, Cha S N, Kim J W, Jang J E, Min K W, Cho S H, Yoon M J, Lee J S, Lee C K, Yoo J H, Kim J M, Jung J E, Jin Y W, Park Y J, You J B 2002 Appl. Phys. Lett. 80 4045

    [11]

    Gao Y B, Zhang X B Lei W, Liu M, Zhang Y N, den Daniel E 2005 Appl. Surf. Sci. 243 19

    [12]

    Zhang Y A, Lin J Y, Wu C X, Zheng Y, Lin Z X, Guo T L 2011 J. Functional Mater. 42 1130 (in Chinese) [张永爱, 林金阳, 吴朝兴, 郑勇, 林志贤, 郭太良 2011 功能材料 42 1130]

    [13]

    Zhao X X, Zhang G M 2002 J. Vac. Sci. Technol. 22 358 (in Chinese) [赵晓雪, 张耿民 2002 真空科学与技术学报 22 358]

    [14]

    Nicolaescu D, Filip V, Kanemaru S, Itoh J 2003 J. Vac. Sci. Technol. B 21 366

    [15]

    Lei D, Wang W B, Zeng L Y, Liang J Q 2009 Acta Phys. Sin. 58 3384 (in Chinese) [雷达, 王维彪, 曾乐勇, 梁静秋 2009 58 3384]

    [16]

    Lei D, Zeng L Y, Xia Y X, Chen S, Liang J Q, Wang W B 2007 Acta Phys. Sin. 56 6616 (in Chinese) [雷达, 曾乐勇, 夏玉学, 陈松, 梁静秋, 王维彪 2007 56 6616]

    [17]

    Zhu Y B, Wang W L, Liao K J 2002 Acta Phys. Sin. 51 2336 (in Chinese) [朱亚波, 王万录, 廖克俊 2002 51 2336]

    [18]

    Dai J F, Mu X W, Qiao X W, Chen X X, Wang J H 2010 Chin. Phys. B 19 057201

    [19]

    Wang X Q, Li L, Chu N J, Jin H X, Ge H L 2008 Acta Phys. Sin. 57 7173 (in Chinese) [王新庆, 李良, 褚宁杰, 金红晓, 葛洪良 2008 57 7173]

    [20]

    Pan J Y, Zhang W Y, Gao Y L 2010 Acta Phys. Sin. 59 8763 (in Chinese) [潘金艳, 张文彦, 高云龙 2010 59 8763]

    [21]

    Fowler R H, Nordheim D L 2003 Proc. Roy. Soc. (London) A 119 173

    [22]

    Miller H C 1967 J. Appl. Phys. 38 1450

    [23]

    Wang X Q, Wang M, Li Z H, Xu Y B, He P M 2005 Ultramicroscopy 102 181

    [24]

    L W H, Zhang S 2012 Acta Phys. Sin. 61 018801 (in Chinese) [吕文辉, 张帅 2012 61 018801]

    [25]

    She J C, Xu N S, Deng S Z, Chen J, Bishpo H, Huq S E, Wang L, Zhong D Y, Wang E G 2003 Appl. Phys. Lett. 83 2671

  • [1] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究.  , 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [2] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究.  , 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [3] 马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙. 碳纳米管薄膜场蒸发效应.  , 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [4] 聂国政, 邹代峰, 钟春良, 许英. 内嵌CuO薄膜对并五苯薄膜晶体管性能的改善.  , 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [5] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能.  , 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [6] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响.  , 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场.  , 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [8] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究.  , 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [9] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究.  , 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [10] 何春山, 王伟良, 陈桂华, 李志兵. 镜像势对碳纳米管阵列场发射特性的影响.  , 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [11] 雷达, 王维彪, 曾乐勇, 梁静秋. 栅极调制纳米线的场增强因子计算.  , 2009, 58(5): 3383-3389. doi: 10.7498/aps.58.3383
    [12] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发.  , 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [13] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究.  , 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [14] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响.  , 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [15] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究.  , 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [16] 王 淼, 尚学府, 李振华, 王新庆, 徐亚伯. 纳米碳管阵列场增强因子的计算.  , 2006, 55(2): 797-802. doi: 10.7498/aps.55.797
    [17] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算.  , 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究.  , 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [19] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究.  , 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [20] 张恩虬;高怀蓉. 量测电子管接触电势差的改进方法.  , 1956, 12(3): 271-274. doi: 10.7498/aps.12.271
计量
  • 文章访问数:  6209
  • PDF下载量:  778
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-09-26
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map