搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维纳米材料热电性能测试方法研究

魏江涛 杨亮亮 秦源浩 宋培帅 张明亮 杨富华 王晓东

引用本文:
Citation:

低维纳米材料热电性能测试方法研究

魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东

Methodology of teasting thermoelectric properties of low-dimensional nanomaterials

Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong
PDF
HTML
导出引用
  • 通过近几十年的研究, 人们对于块体及薄膜材料的热电性能已经有了较全面的认识, 热电优值ZT的提高取得了飞速的进展, 比如碲化铋相关材料、硒化亚铜相关材料、硒化锡相关材料的最大ZT值都突破了2. 但是, 这些体材料的热电优值距离大规模实用仍然有较大的差距. 通过理论计算得知, 当块体热电材料被制作成低维纳米结构材料时, 比如二维纳米薄膜、一维纳米线, 热电性能会得到显著的改善, 具有微纳米结构材料的热电性能研究引起了科研人员的极大兴趣. 当块体硅被制作成硅纳米线时, 热电优值改善了将近100倍. 然而, 微纳米材料的热电参数测量极具挑战, 因为块体材料的热电参数测量方法和测试平台已经不再适用于低维材料, 需要开发出新的测量方法和测试平台用来研究低维材料的热导率、电导率和塞贝克系数. 本文综述了几种用于精确测量微纳米材料热电参数的微机电结构, 包括双悬空岛、单悬空岛、悬空四探针结构, 详细介绍了每一种微机电结构的制备方法、测量原理以及对微纳米材料热电性能测试表征的实例.
    Through the research in recent decades, one has a comprehensive understanding of the thermoelectric properties of bulk and thin film materials, and made rapid progress of improving the thermoelectric figure of merit ZT, for instance, the maximum ZT values of bismuth telluride related materials, cuprous selenide related materials and tin selenide related materials all exceed 2. However, these bulk materials are still far from the requirements for their practical applications on a large scale. The theoretical calculations show that when bulk thermoelectric materials are made a low-dimensional nanostructured materials, such as two-dimensional nano-films and one-dimensional nanowires, their thermoelectric properties will be significantly improved. Taking silicon for example, when the bulk silicon is made silicon nanowires, the ZT value increases nearly a hundredfold. Hence, researches of the thermoelectric performances of materials with micro-nano structures have received great attention. However, the measurement of thermoelectric parameters of low-dimensional materials has brought challenges to researchers, for the traditional measurement methods or test platforms designed for bulk materials are no longer suitable for measuring thermoelectric parameters (thermal conductivity, electrical conductivity and Seebeck coefficient) of low-dimensional materials. Therefore, new measurement methods and test platforms need developing. In this case, micro-electromechanical system micro-suspended structure came into being. In this approach used are the separated samples and substrates, and isolated heat transfer channels, with which the thermal parameters of micro/nano materials can be accurately measured, and the sensitivity of thermal conductance can reach 10 PW/K. In this review, the structures of several micro-electromechanical systems used to measure the thermoelectric properties of low-dimensional nanostructures are introduced, including double suspended islands, single suspended islands and suspended four-probe structures. Meanwhile, the fabrication methods and measurement principles of these MEMS structures and thermoelectric properties of micro-nano structure materials are described in detail.
      通信作者: 王晓东, xdwang@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB1503602, 2018YFB1107502)、中国科学院先导B项目(批准号: XDB43020500)和中国科学院科研仪器设备研制项目(批准号: GJJSTD20200006)资助的课题
      Corresponding author: Wang Xiao-Dong, xdwang@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFB1503602, 2018YFB1107502), the Pilot B Program of the Chinese Academy of Sciences, China (Grant No. XDB43020500), and Development Program of Scientific Research Instruments and Equipment of the Chinese Academy of Sciences, China (Grant No. GJJSTD20200006)
    [1]

    Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F, Wang X 2020 J. Mater. Sci. 55 12642Google Scholar

    [2]

    邓元, 张义政, 王瑶, 高洪利 2014 航空学报 35 2733Google Scholar

    Deng Y, Zhang Y Z, Wang Y, Gao H L 2014 Acta Aeronaut. Astronaut. Sin. 35 2733Google Scholar

    [3]

    Zhou Y, Zhao L 2017 Adv. Mater. 29 1702676Google Scholar

    [4]

    LI P, Nie X, Tian Y, Fang W, Zhao W 2019 J. Inorg. Mater. 34 679Google Scholar

    [5]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [6]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [7]

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X 2015 Appl. Energy 143 1Google Scholar

    [8]

    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R 2009 Nat. Nanotechnol. 4 235Google Scholar

    [9]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [10]

    秦丹丹, 李春鹤, 蔡伟, 隋解和 2020 功能材料 51 4023Google Scholar

    Qin D D, Li C H, Cai W, Sui J H 2020 J. Funct. Mater. 51 4023Google Scholar

    [11]

    Wang T, Huo T, Wang H, Wang C 2020 Sci. China-Mater. 63 8Google Scholar

    [12]

    Wang L, Meng Q, Fan W 2012 J. Semicond. 33 113004Google Scholar

    [13]

    Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar

    [14]

    袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 68 117201Google Scholar

    Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar

    [15]

    邱小小, 周细应, 王连军, 江莞 2020 人工晶体学报 49 920Google Scholar

    Qiu X X, Zhou X Y, Wang L J, Jiang G 2020 J Synthetic. Cryst. 49 920Google Scholar

    [16]

    邹平, 吕丹, 徐桂英 2020 69 057201Google Scholar

    Zou P, Lü D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar

    [17]

    马瑞, 李宇洋, 刘光华, 李江涛, 韩叶茂, 周敏, 李来风 2017 陶瓷学报 38 466Google Scholar

    Ma R, Li Y Y, Liu G H, Li J T, Han Y M, Zhou M, Li L F 2017 J. Ceram 38 466Google Scholar

    [18]

    吴子华, 谢华清, 曾庆峰 2013 62 097301Google Scholar

    Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301Google Scholar

    [19]

    黄志成, 姚瑶, 裴俊, 董金峰, 张波萍, 李敬锋, 尚鹏鹏 2019 无机材料学报 34 321Google Scholar

    Huang Z C, Yao Y, Pei J, Dong J F, Zhang B P, Li J F, Shang P P 2019 J. Inorg. Mater. 34 321Google Scholar

    [20]

    Vining C B 2009 Nat. Mater. 8 83Google Scholar

    [21]

    沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 30Google Scholar

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 30Google Scholar

    [22]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [23]

    Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U S A 112 8205Google Scholar

    [24]

    Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar

    [25]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [26]

    陈立东, 熊震, 柏胜强 2010 无机材料学报 25 3Google Scholar

    Chen L D, Xiong Z, Bai S Q 2010 J. Inorg. Mater. 25 3Google Scholar

    [27]

    胡慧珊, 杨君友, 辛集武, 李思慧, 姜庆辉 2019 无机材料学报 34 315Google Scholar

    Hu H S, Yang J Y, Xin J W, Li S H, Jiang Q H 2019 J. Inorg. Mater. 34 315Google Scholar

    [28]

    陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 66 167201Google Scholar

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar

    [29]

    Hicks L, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [30]

    Hicks L, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [31]

    Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X 2019 Nanomaterials 9 1789Google Scholar

    [32]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [33]

    Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar

    [34]

    Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar

    [35]

    霍建琴, 冯飞, 王文荣, 戈肖鸿, 李铁, 王跃林 2012 传感器与微系统 31 59Google Scholar

    Huo J Q, Feng F, Wang W R, Ge X H, Li T, Wang Y L 2012 Transd. Microsyst. Technol. 31 59Google Scholar

    [36]

    张晖, 杨君友, 张建生, 吴进, 陈辉 2011 材料导报 25 32Google Scholar

    Zhang H, Yang J Y, Zhang J S, Wu J, Chen H 2011 Mater Rev. 25 32Google Scholar

    [37]

    Liu Y, Zhang M, Ji A, Yang F, Wang X 2016 RSC Adv. 6 48933Google Scholar

    [38]

    Hernandez J A, Carpena-Nunez J, Fonseca L F, Pettes M T, Yacaman M J, Benitez A 2018 Nanotechnology 29 364001Google Scholar

    [39]

    Rodriguez-Viejo J, Licea Jimenez L, Perez Garcia S A, Alvarez-Quintana J 2015 J. Adv. Therm. Sci. Res. 2 1Google Scholar

    [40]

    Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transf Trans. ASME 125 881Google Scholar

    [41]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501Google Scholar

    [42]

    Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar

    [43]

    Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar

    [44]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A, Heath J R 2008 Nature 451 168Google Scholar

    [45]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [46]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Funct. Mater. 27 1702824Google Scholar

    [47]

    Ferrando-Villalba P, D'Ortenzi L, Dalkiranis G G, Cara E, Lopeandia A F, Abad L, Rurali R, Cartoixa X, De Leo N, Saghi Z, Jacob M, Gambacorti N, Boarino L, Rodriguez Viejo J 2018 Sci. Rep. 8 12796Google Scholar

    [48]

    Ferrando-Villalba P, Lopeandia A F, Abad L, Llobet J, Molina Ruiz M, Garcia G, Gerboles M, Alvarez F X, Goni A R, Munoz Pascual F J, Rodriguez Viejo J 2014 Nanotechnology 25 185402Google Scholar

    [49]

    Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar

    [50]

    Park W, Romano G, Ahn E C, Kodama T, Park J, Barako M T, Sohn J, Kim S J, Cho J, Marconnet A M, Asheghi M, Kolpak A M, Goodson K E 2017 Sci. Rep. 7 6233Google Scholar

    [51]

    Park W, Sohn J, Romano G, Kodama T, Sood A, Katz J S, Kim B S Y, So H, Ahn E C, Asheghi M, Kolpak A M, Goodson K E 2018 Nanoscale 10 11117Google Scholar

    [52]

    Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar

    [53]

    Lee E K, Yin L, Lee Y, Lee J W, Lee S J, Lee J, Cha S N, Whang D, Hwang G S, Hippalgaonkar K, Majumdar A, Yu C, Choi B L, Kim J M, Kim K 2012 Nano Lett. 12 2918Google Scholar

    [54]

    Li G, Yarali M, Cocemasov A, Baunack S, Nika D L, Fomin V M, Singh S, Gemming T, Zhu F, Mavrokefalos A, Schmidt O G 2017 ACS Nano 11 8215Google Scholar

    [55]

    Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar

    [56]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar

    [57]

    Karg S F, Troncale V, Drechsler U, Mensch P, Das Kanungo P, Schmid H, Schmidt V, Gignac L, Riel H, Gotsmann B 2014 Nanotechnology 25 305702Google Scholar

    [58]

    Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M, Jiang X 2019 Nat. Mater. 18 62Google Scholar

    [59]

    Xu E, Li Z, Acosta J A, Li N, Swartzentruber B, Zheng S, Sinitsyn N, Htoon H, Wang J, Zhang S 2016 Nano Res. 9 820Google Scholar

    [60]

    Ko T Y, Shellaiah M, Sun K W 2016 Sci. Rep. 6 35086Google Scholar

    [61]

    Wang Y, Lin R, Zhu P, Zheng Q, Wang Q, Li D, Zhu J 2018 Nano Lett. 18 2772Google Scholar

    [62]

    Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 IEEE 633Google Scholar

    [63]

    Liu N, Zhu T, Rosul M G, Peters J, Bowers J E, Zebarjadi M 2020 Mater.Today Phys. 14 100224Google Scholar

    [64]

    吴健 2014 硕士学位论文 (南京: 东南大学)

    Wu J 2014 M.D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [65]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [66]

    Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar

    [67]

    Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I 2015 Nat. Commun. 6 7228Google Scholar

    [68]

    Haras M, Lacatena V, Bah T M, Didenko S, Robillard J-F, Monfray S, Skotnicki T, Dubois E 2016 IEEE Electron Device Lett. 37 1358Google Scholar

    [69]

    马维刚, 王海东, 张兴, 王玮 2011 60 421Google Scholar

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 421Google Scholar

    [70]

    朱丽丹 2012 博士学位论文 (北京: 中国科学院工程热物理研究所)

    Zhu L D 2012 Ph. D. Dissertation (Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences) (in Chinese)

    [71]

    Maire J, Nomura M 2014 Jpn. J. Appl. Phys. 53 06je09 06JE09Google Scholar

    [72]

    Wang H, Chu W, Chen G 2019 Adv. Electron. Mater. 5 1900167Google Scholar

    [73]

    Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L 2013 Nano Lett. 13 550Google Scholar

    [74]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [75]

    Kim J, Ou E, Sellan D P, Shi L 2015 Rev. Sci. Instrum. 86 044901Google Scholar

    [76]

    Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756Google Scholar

    [77]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [78]

    Hippalgaonkar K, Huang B, Chen R, Sawyer K, Ercius P, Majumdar A 2010 Nano Lett. 10 4341Google Scholar

    [79]

    朱林, 赵扬, 杨决宽 2015 真空科学与技术学报 35 1352Google Scholar

    Zhu L, Zhao Y, Yang J K 2015 Chin. J. Vac. Sci. Techno. 35 1352Google Scholar

    [80]

    朱林 2016 硕士学位论文 (南京: 东南大学)

    Zhu L 2016 M. D. Dissertation (Nanjing: Southeast University) (in Chinese)

  • 图 1  块体材料的测量原理图

    Fig. 1.  Measurement schematic diagram of bulk materials.

    图 2  (a) MEMS悬空岛结构热电参数测量原理图[37]; (b) 固定在微悬空结构上的ITO纳米线[38]

    Fig. 2.  (a) Schematic diagram of thermal and electrical parameters measurement of MEMS suspended island structure[37]; (b) ITO nanowires fixed on the suspended structure[38].

    图 3  (a) 用于测量低温端电阻Rs的惠斯通电桥装置[42]; (b) 加热端和低温端测得的温升与功率的函数关系;电桥法的Ts灵敏度为1 mK, 热导的测量灵度可以达到10 pW/K[42]

    Fig. 3.  (a) Wheatstone bridge device for measuring resistance Rs at low temperature end[42]; (b) the temperature rise measured at the heating end and the low temperature end as a function of power. Ts sensitivity of bridge method is1 mK, thermal conductance sensitivity is 10 pW/K[42].

    图 4  集成微器件示意图[43] (a) 硅微带连接两个悬空岛(30 µm × 40 µm), 用于与低应力SiNx薄膜进行热接触. 定义了硅带的长度, 宽度和厚度; (b) 每个悬空岛有6条低应力SiNx悬臂相连, 用来支撑微悬浮器件; (c) 通过四探针进行电测量; (Cr/Pt = 2/30 nm, 由蓝色箭头标记). 其余的悬臂用来测量两个蛇形电阻; (d) 多孔硅微带悬空器件. 纳米孔是通过BCP光刻制造的; (e) 多孔硅微带中孔间距和孔颈的定义示意图

    Fig. 4.  Schematic of the integrated microdevice[43]: (a) Silicon micro-ribbon connects two suspended islands(30 µm × 40 µm)for thermal contact with low stress SiNx films, length, width and thickness of silicon tape are defined; (b) each suspended island is connected by six low stress SiNx cantilevers to support micro suspended device; (c) electrical measurements are made with four probes (Cr/Pt = 2/30 nm, marked by the blue arrows), the rest of the cantilevers are used to measure two serpentine resistances; (d) porous silicon micro-ribbon suspended device, nanoholes are made by BCP lithography; (e) definition of pitch and neck in porous silicon micro-ribbon.

    图 5  基于嵌段共聚物纳米光刻的7个步骤的工艺流程图[43]

    Fig. 5.  Process flow diagram illustrating the 7 steps of the block copolymer based nanolithography[43].

    图 6  扫描电子显微镜 (SEM) 图像 (a) 纳米带 (470 nm宽, 80 nm厚)[50] (b) 蛇形纳米带 (470 nm宽, 80 nm厚, 狭缝长395 nm)[50]; (c) 梯状结构纳米带, 矩形孔间距为970 nm[51]; (d) 梯状结构纳米带, 矩形孔间距为70 nm[51]

    Fig. 6.  Scanning electron microscopy (SEM) images: (a) Nanoribbon (470 nm wide, 80 nm thick)[50]; (b) serpentine nanoribbon (470 nm wide, 80 nm thick, 395 nm long slit)[50]; (c) ladder-structured nanoribbon with rectangular hole of 970 nm[51]; (d) ladder-structured nanoribbon with rectangular hole of 70 nm[51].

    图 7  (a) MEMS悬空结构热电参数测量原理图[68]; (b) 普通薄膜和声子晶体薄膜低温端和高温端温度差和加热功率的关系, 其中插图为声子晶体热导率与温差ΔT的关系[68]

    Fig. 7.  (a) Schematic diagram of MEMS suspended structure thermoelectric parameter measurement[68]; (b) the relation between the temperature difference and heating power between the low temperature end and the high temperature end of the plain film and the phononic crystal film is shown in the figure. Inset plot presents the relation between κ of the phononic crystal and the temperature difference ΔT[68].

    图 8  集成声子晶体悬浮硅薄膜热导率测量平台的制作顺序. 在加工的每个步骤之后, 均使用照片中沿A-A'和B-B'切割线的横截面图显示了工艺流程. 最左边的SEM图显示了整个微悬空设备, 中间的SEM图显示了放大的薄膜, 最右边的SEM图显示了声子晶体, 并突出了它们的维度[68]

    Fig. 8.  Manufacturing sequence of thermal conductivity measurement platform of suspended thin-film silicon with integrated phononic crystals. Process flow showed after each step of fabrication using cross-sectional view along A-A’ and B-B’ cutlines presented in the photo. The leftmost SEM image showed the entire micro-suspension device, the middle SEM image showed the enlarged film, the rightmost SEM image showed the phononic crystals and highlighted their dimensions[68].

    图 9  (a) 不同宽度的纳米线的实验 (散点) 和模拟拟合 (线)[71]; (b) 基于超快脉冲激光系统的TDTR实验装置示意图[72]

    Fig. 9.  (a) Experimental (scattered points) and simulation fitting (lines) for three nanowires of different width[71]; (b) sketch of the TDTR experimental setup based on an ultrafast-pulsed-laser system[72].

    图 10  Si声子晶体纳米结构的SEM照片 (a) 悬浮结构的全局图像[71]; (b) 放大的器件结构图, 显示了中心金属垫和鱼骨形状的晶体, 其中颈部尺寸为89 nm[71]

    Fig. 10.  SEM images of Si phononic crystal nanostructure: (a) Global image of suspended structure[71]; (b) enlarged device structure diagram showing the central metal pad and fishbone shaped crystal, where in the neck size is 89 nm[71].

    图 11  (a) 悬挂在微桥装置中央框架上的h-BN样品的相关尺寸的示意图[73]; (b)微悬浮结构的SEM图, 悬浮结构上的样品为h-BN1[73]; (c) 两个7.5 μm长, 11层和5层厚悬浮h-BN样品的导热系数随温度的变化关系, 并与其他人的实验结果进行了对比[73]

    Fig. 11.  (a) Schematic diagram of the relevant dimensions of the h-BN sample suspended on the central frame of the microbridge device[73]; (b) SEM image of micro-suspension structure, the sample on suspension structure was h-BN1[73]; (c) the relationship between the thermal conductivity of two samples of 7.5 μm long, 11 layer and 5 layer thick suspension h-BN and the temperature is studied and compared with the experimental results of others[73].

    图 12  样品h-BN的转移和器件图[73] (a) 在被热氧化物 (红色) 覆盖的硅衬底 (灰色) 顶部剥落的几层h-BN薄片 (绿色); (b) 基底上的金标记 (金色) 和覆盖有图案的几层h-BN带的PMMA层 (半透明); (c) 转移到微桥设备顶部的PMMA载体层 (蓝色); (d)PMMA层溶解后, 少量h-BN层悬浮在微器件的中心SiNx框架上; (e) 微桥设备; (f) 在设备上对齐PMMA层; (g)溶解PMMA层后悬浮在装置上的11层h-BN样品; (h) 测量装置的等效热电路, (e)−(g)部分中刻度条分别代表25, 10和5 μm

    Fig. 12.  The h-BN sample transfer and device diagram[73]: (a) A few-layer h-BN flake (green) exfoliated on top of a Si substrate (gray) covered by thermal oxide (red); (b) Au marks (golden) on the substrate and a PMMA layer (semitransparent) covering the patterned few-layer h-BN ribbon; (c) PMMA carrier layer transferred on top of the microbridge device (blue); (d) few-layer h-BN suspended on the central SiNx frame of the microdevice after the dissolution of the PMMA layer; (e) microbridge device; (f) PMMA layer aligned on the device; (g) an 11-layer h-BN sample suspended on the device after dissolving of the PMMA layer; (h) equivalent thermal circuit of the measurement device, the scale bars in the (e)−(g) section represent 25, 10 and 5 μm, respectively.

    图 13  器件的结构图和等效热阻图[75] (a) 240 nm宽, 220 nm厚的硅纳米线样品的光学显微照片 (左边) 和SEM照片 (右边), 如顶部SEM所示, 在从左侧开始的第一条温度计线的中心形成一个小的V形突起, 以帮助测量每个温度计线的中心和纳米结构的接触点之间的偏差 (didj); (b)740 nm宽, 220 nm厚的硅纳米线样品的光学显微照片, 装配在4条悬浮的Pt/SiNx线上, 以及沿着Pt/SiNx加热线 (第i条线) 和一条Pt/SiNx电阻温度计线 (第j条线, ji) 的温度分布示意图; (c) 当第一条Pt/SiNx线以 (IV)1的速率电加热时, 测量装置的热阻电路图

    Fig. 13.  Structure diagram and equivalent thermal resistance diagram of the device[75]: (a) Optical micrographs (left) and SEM images (right) of a 240 nm wide, 220 nm thick silicon nanowire sample, as shown in the top SEM, a small V-shape protrusion is patterned at the center of the first thermometer line from the left to assist in the measurement of the deviation (di and dj) between the center of each thermometer line and the contact point to the nanostructure; (b) optical micrograph of 740 nm wide and 220 nm thick silicon nanowire samples, assembled on four suspended Pt/SiNx lines, and schematic diagram of temperature distribution along the Pt/SiNx heating line (ith line) and one Pt/SiNx resistance thermometer line (jth line, ji); (c) thermal resistance circuit of the measurement device when the first Pt/SiNx line is electrically heated at a rate of (IV)1.

    图 14  (a) 第一次Pt—C键合之后的SEM图[45]; (b)第二次Pt-C键合之后的SEM图[45]

    Fig. 14.  (a) SEM image after the first Pt—C bonding[45]; (b) SEM image after the second Pt—C bonding[45].

    表 1  测量的悬浮h-BN样品的尺寸

    Table 1.  Measurement of the size of suspended h-BN samples.

    原子层数宽度/µm悬浮的长度/µm
    h-BN112 ± 19.03.0
    h-BN2126.75.0
    h-BN3116.57.5
    h-BN456.67.5
    下载: 导出CSV
    Baidu
  • [1]

    Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F, Wang X 2020 J. Mater. Sci. 55 12642Google Scholar

    [2]

    邓元, 张义政, 王瑶, 高洪利 2014 航空学报 35 2733Google Scholar

    Deng Y, Zhang Y Z, Wang Y, Gao H L 2014 Acta Aeronaut. Astronaut. Sin. 35 2733Google Scholar

    [3]

    Zhou Y, Zhao L 2017 Adv. Mater. 29 1702676Google Scholar

    [4]

    LI P, Nie X, Tian Y, Fang W, Zhao W 2019 J. Inorg. Mater. 34 679Google Scholar

    [5]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [6]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [7]

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X 2015 Appl. Energy 143 1Google Scholar

    [8]

    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R 2009 Nat. Nanotechnol. 4 235Google Scholar

    [9]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [10]

    秦丹丹, 李春鹤, 蔡伟, 隋解和 2020 功能材料 51 4023Google Scholar

    Qin D D, Li C H, Cai W, Sui J H 2020 J. Funct. Mater. 51 4023Google Scholar

    [11]

    Wang T, Huo T, Wang H, Wang C 2020 Sci. China-Mater. 63 8Google Scholar

    [12]

    Wang L, Meng Q, Fan W 2012 J. Semicond. 33 113004Google Scholar

    [13]

    Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar

    [14]

    袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 68 117201Google Scholar

    Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar

    [15]

    邱小小, 周细应, 王连军, 江莞 2020 人工晶体学报 49 920Google Scholar

    Qiu X X, Zhou X Y, Wang L J, Jiang G 2020 J Synthetic. Cryst. 49 920Google Scholar

    [16]

    邹平, 吕丹, 徐桂英 2020 69 057201Google Scholar

    Zou P, Lü D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar

    [17]

    马瑞, 李宇洋, 刘光华, 李江涛, 韩叶茂, 周敏, 李来风 2017 陶瓷学报 38 466Google Scholar

    Ma R, Li Y Y, Liu G H, Li J T, Han Y M, Zhou M, Li L F 2017 J. Ceram 38 466Google Scholar

    [18]

    吴子华, 谢华清, 曾庆峰 2013 62 097301Google Scholar

    Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301Google Scholar

    [19]

    黄志成, 姚瑶, 裴俊, 董金峰, 张波萍, 李敬锋, 尚鹏鹏 2019 无机材料学报 34 321Google Scholar

    Huang Z C, Yao Y, Pei J, Dong J F, Zhang B P, Li J F, Shang P P 2019 J. Inorg. Mater. 34 321Google Scholar

    [20]

    Vining C B 2009 Nat. Mater. 8 83Google Scholar

    [21]

    沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 30Google Scholar

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 30Google Scholar

    [22]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [23]

    Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U S A 112 8205Google Scholar

    [24]

    Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar

    [25]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [26]

    陈立东, 熊震, 柏胜强 2010 无机材料学报 25 3Google Scholar

    Chen L D, Xiong Z, Bai S Q 2010 J. Inorg. Mater. 25 3Google Scholar

    [27]

    胡慧珊, 杨君友, 辛集武, 李思慧, 姜庆辉 2019 无机材料学报 34 315Google Scholar

    Hu H S, Yang J Y, Xin J W, Li S H, Jiang Q H 2019 J. Inorg. Mater. 34 315Google Scholar

    [28]

    陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 66 167201Google Scholar

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar

    [29]

    Hicks L, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [30]

    Hicks L, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [31]

    Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X 2019 Nanomaterials 9 1789Google Scholar

    [32]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [33]

    Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar

    [34]

    Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar

    [35]

    霍建琴, 冯飞, 王文荣, 戈肖鸿, 李铁, 王跃林 2012 传感器与微系统 31 59Google Scholar

    Huo J Q, Feng F, Wang W R, Ge X H, Li T, Wang Y L 2012 Transd. Microsyst. Technol. 31 59Google Scholar

    [36]

    张晖, 杨君友, 张建生, 吴进, 陈辉 2011 材料导报 25 32Google Scholar

    Zhang H, Yang J Y, Zhang J S, Wu J, Chen H 2011 Mater Rev. 25 32Google Scholar

    [37]

    Liu Y, Zhang M, Ji A, Yang F, Wang X 2016 RSC Adv. 6 48933Google Scholar

    [38]

    Hernandez J A, Carpena-Nunez J, Fonseca L F, Pettes M T, Yacaman M J, Benitez A 2018 Nanotechnology 29 364001Google Scholar

    [39]

    Rodriguez-Viejo J, Licea Jimenez L, Perez Garcia S A, Alvarez-Quintana J 2015 J. Adv. Therm. Sci. Res. 2 1Google Scholar

    [40]

    Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transf Trans. ASME 125 881Google Scholar

    [41]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501Google Scholar

    [42]

    Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar

    [43]

    Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar

    [44]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A, Heath J R 2008 Nature 451 168Google Scholar

    [45]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [46]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Funct. Mater. 27 1702824Google Scholar

    [47]

    Ferrando-Villalba P, D'Ortenzi L, Dalkiranis G G, Cara E, Lopeandia A F, Abad L, Rurali R, Cartoixa X, De Leo N, Saghi Z, Jacob M, Gambacorti N, Boarino L, Rodriguez Viejo J 2018 Sci. Rep. 8 12796Google Scholar

    [48]

    Ferrando-Villalba P, Lopeandia A F, Abad L, Llobet J, Molina Ruiz M, Garcia G, Gerboles M, Alvarez F X, Goni A R, Munoz Pascual F J, Rodriguez Viejo J 2014 Nanotechnology 25 185402Google Scholar

    [49]

    Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar

    [50]

    Park W, Romano G, Ahn E C, Kodama T, Park J, Barako M T, Sohn J, Kim S J, Cho J, Marconnet A M, Asheghi M, Kolpak A M, Goodson K E 2017 Sci. Rep. 7 6233Google Scholar

    [51]

    Park W, Sohn J, Romano G, Kodama T, Sood A, Katz J S, Kim B S Y, So H, Ahn E C, Asheghi M, Kolpak A M, Goodson K E 2018 Nanoscale 10 11117Google Scholar

    [52]

    Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar

    [53]

    Lee E K, Yin L, Lee Y, Lee J W, Lee S J, Lee J, Cha S N, Whang D, Hwang G S, Hippalgaonkar K, Majumdar A, Yu C, Choi B L, Kim J M, Kim K 2012 Nano Lett. 12 2918Google Scholar

    [54]

    Li G, Yarali M, Cocemasov A, Baunack S, Nika D L, Fomin V M, Singh S, Gemming T, Zhu F, Mavrokefalos A, Schmidt O G 2017 ACS Nano 11 8215Google Scholar

    [55]

    Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar

    [56]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar

    [57]

    Karg S F, Troncale V, Drechsler U, Mensch P, Das Kanungo P, Schmid H, Schmidt V, Gignac L, Riel H, Gotsmann B 2014 Nanotechnology 25 305702Google Scholar

    [58]

    Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M, Jiang X 2019 Nat. Mater. 18 62Google Scholar

    [59]

    Xu E, Li Z, Acosta J A, Li N, Swartzentruber B, Zheng S, Sinitsyn N, Htoon H, Wang J, Zhang S 2016 Nano Res. 9 820Google Scholar

    [60]

    Ko T Y, Shellaiah M, Sun K W 2016 Sci. Rep. 6 35086Google Scholar

    [61]

    Wang Y, Lin R, Zhu P, Zheng Q, Wang Q, Li D, Zhu J 2018 Nano Lett. 18 2772Google Scholar

    [62]

    Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 IEEE 633Google Scholar

    [63]

    Liu N, Zhu T, Rosul M G, Peters J, Bowers J E, Zebarjadi M 2020 Mater.Today Phys. 14 100224Google Scholar

    [64]

    吴健 2014 硕士学位论文 (南京: 东南大学)

    Wu J 2014 M.D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [65]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [66]

    Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar

    [67]

    Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I 2015 Nat. Commun. 6 7228Google Scholar

    [68]

    Haras M, Lacatena V, Bah T M, Didenko S, Robillard J-F, Monfray S, Skotnicki T, Dubois E 2016 IEEE Electron Device Lett. 37 1358Google Scholar

    [69]

    马维刚, 王海东, 张兴, 王玮 2011 60 421Google Scholar

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 421Google Scholar

    [70]

    朱丽丹 2012 博士学位论文 (北京: 中国科学院工程热物理研究所)

    Zhu L D 2012 Ph. D. Dissertation (Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences) (in Chinese)

    [71]

    Maire J, Nomura M 2014 Jpn. J. Appl. Phys. 53 06je09 06JE09Google Scholar

    [72]

    Wang H, Chu W, Chen G 2019 Adv. Electron. Mater. 5 1900167Google Scholar

    [73]

    Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L 2013 Nano Lett. 13 550Google Scholar

    [74]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [75]

    Kim J, Ou E, Sellan D P, Shi L 2015 Rev. Sci. Instrum. 86 044901Google Scholar

    [76]

    Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756Google Scholar

    [77]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [78]

    Hippalgaonkar K, Huang B, Chen R, Sawyer K, Ercius P, Majumdar A 2010 Nano Lett. 10 4341Google Scholar

    [79]

    朱林, 赵扬, 杨决宽 2015 真空科学与技术学报 35 1352Google Scholar

    Zhu L, Zhao Y, Yang J K 2015 Chin. J. Vac. Sci. Techno. 35 1352Google Scholar

    [80]

    朱林 2016 硕士学位论文 (南京: 东南大学)

    Zhu L 2016 M. D. Dissertation (Nanjing: Southeast University) (in Chinese)

  • [1] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率.  , 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响.  , 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [7] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究.  , 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [12] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟.  , 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析.  , 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [14] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究.  , 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [15] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究.  , 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [16] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究.  , 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [18] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究.  , 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [19] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [20] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应.  , 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
计量
  • 文章访问数:  10144
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-09-23
  • 上网日期:  2021-02-02
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map