Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of data retention for charge trapping memory by first-principles

Jiang Xian-Wei Lu Shi-Bin Dai Guang-Zhen Wang Jia-Yu Jin Bo Chen Jun-Ning

Citation:

Research of data retention for charge trapping memory by first-principles

Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the influence of charge trapping memory storage feature is studied by doping the substitutional impurity Al and introducing oxygen vacancy within HfO2. HfO2 is widely used in trapping layer of charge trapping memory, for it belongs to high dielectric constant materials with the abilities to shrink the device size and improve the device performance. Materials studio and Vienna Ab-initio Simulation Package are used to investigate the influence of doping Al on the formation of the oxygen vacancy in HfO2 as a trapping layer. At the same time, the interaction energy of two defects at different distances is calculated. Results show that doping the substitutional impurity Al reduces the formation energy of oxygen vacancies in HfO2, and the reduced formation energy of the three-fold-coordinated O vacancy is larger than that of the four-fold-coordinated O vacancy. After having studied three different defect distances between the substitutional impurity Al and the three-fold-coordinated O vacancy, the results indicate that the system acquires the largest charge trapping energy, the most of quantum states, the smallest population number, and the longest Al–O bond length when the distance between the defects is 2.107 Å. Studying the bond length changes of the three systems after writing a hole, we obtain a result that the change of Al–O bond length is the smallest when the distance between defects is 2.107 Å. In conclusion, the data retention in the trapping layer of monoclinic HfO2 can be improved by doping the substitutional impurity Al. This work will provide a theoretical guidance for the performance improvement in the data retention of charge trapping memory.
      Corresponding author: Jiang Xian-Wei, jiangxianwei1983@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21201052), the Key University Science Research Project of Anhui Province, China (Grant No. KJ2014A208), the Key University Science Research Project of Anhui Province, China (Grant No. KJ2013A224), and the Universities Outstanding Youth of Key Projects, Anhui Province (Grant No. 2013SQRL065ZD).
    [1]

    Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377

    [2]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791

    [3]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [4]

    Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252

    [5]

    Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]

    [6]

    Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381

    [7]

    You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653

    [8]

    Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901

    [9]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [10]

    Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889

    [11]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654

    [12]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143

    [13]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847

    [14]

    Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178

    [15]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104

    [16]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [17]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212

    [18]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [19]

    Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903

    [20]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [21]

    Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [26]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101]

    [27]

    Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [28]

    Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399

    [29]

    Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]

    [30]

    Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503

    [31]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

  • [1]

    Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377

    [2]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791

    [3]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [4]

    Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252

    [5]

    Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]

    [6]

    Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381

    [7]

    You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653

    [8]

    Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901

    [9]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [10]

    Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889

    [11]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654

    [12]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143

    [13]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847

    [14]

    Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178

    [15]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104

    [16]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [17]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212

    [18]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [19]

    Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903

    [20]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [21]

    Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [26]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101]

    [27]

    Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [28]

    Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399

    [29]

    Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]

    [30]

    Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503

    [31]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

  • [1] Wang Ze-Pu, Fu Nian, Yu Han, Xu Jing-Wei, He Qi, Zheng Shu-Kai, Ding Bang-Fu, Yan Xiao-Bing. Enhancing oxygen vacancy photocatalytic efficiency of bismuth tungstate using In-doped W site. Acta Physica Sinica, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [2] Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi. First principles study of effect of vaiable component Al on HfO2 resistance. Acta Physica Sinica, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [3] He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang. First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies. Acta Physica Sinica, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [7] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [8] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [9] Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin. Research on charge trapping memory’s over erase. Acta Physica Sinica, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [10] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [14] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [15] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [16] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] Hou Qing-Yu, Zhang Yue, Zhang Tao. First principle study on the electron life span of degenerate anatase phase TiO2 semi-conductor with high concentration of oxygen vacancies. Acta Physica Sinica, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] Yan Zhi-Jun, Wang Yin-Yue, Xu Run, Jiang Zui-Min. Structural characteristics of HfO2 films grown by e-beam evaporation. Acta Physica Sinica, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
Metrics
  • Abstract views:  6475
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2015
  • Accepted Date:  03 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map