-
采用射频反应溅射法于室温下在Cu/Ti/SiO2/Si基底上制备了氧化钒薄膜. X-射线衍射、X射线光电子能谱分析仪及原子力显微镜结果表明, 室温下制备的氧化钒薄膜除微弱的V2O5 (101)和V2O3 (110)峰外, 没有明显的结晶取向, 是VO2, V2O5, V2O3及VO的混合相薄膜, 且薄膜表面颗粒大小均匀, 表面均方根粗糙度约为1 nm. 采用半导体参数分析仪对薄膜的电开关特性进行测试. 结果表明薄膜具有较低的开关电压(VSetVResetIReset)随限流的增大而增大.通过高低阻态时I-V对数曲线的拟合(高阻态斜率>1, 低阻态斜率=1), 认为Cu离子在薄膜中扩散形成的导电细丝是该体系发生电阻转变的主要机制.Vanadium oxide thin films are deposited on Cu/Ti/SiO2/Si by reactive sputtering at room temperature. The crystal structure, component and surface morphology of VOx film are characterized by X ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy, respectively. These investigations reveal that there is no obvious crystal orientation except weak V2O5 (101) and V2O3 (110) peaks, and the film contains VO2, V2O5, V2O3 and VO mixture phase. The surface particle size of the film is uniform with a root mean square roughness of 1 nm. The resistive switching properties of VOx thin film are tested by semiconductor device analyzer (Agilent B1500A). The I-V characteristics of the VOx memory cell reveal that the cell has low switch voltage (VSetVResetIReset) increases with current compliance increasing. The double-logarithmic plots of the I-V curve for the high and low resistance state show high configuration slope >1 and low resistance state slope=1. It is confirmed that the copper ion diffusion and the formation of conduction filaments may be the resistance switching mechanism of the VOx/Cu structure.
-
Keywords:
- VOx thin films /
- resistive switching /
- resistive random access memory /
- conductive filaments
[1] Yoshio Nishi 2011 Curr. Appl. Phys. 11 101
[2] Chen C, Pan F, Wang Z S, Yang J, Zeng F 2012 J. Appl. Phys. 111 013702
[3] Fang Z, Yu H Y, Chroboczek J A, Ghibaudo G, Buckley J, Salvo B D, Li X, Kwong D L 2012 IEEE Electr. Device Lett. 59 850
[4] Sawa A 2008 Mater. Today 11 28
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2623
[6] Panda D, Huang C Y, Tseng T Y 2012 Appl. Phys. Lett. 100 112901
[7] Clima S, Chen Y Y, Degraeve R, Mees M, Sankaran K, Govoreanu B, Jurczak M, Gendt S D, Pourtois G 2012 Appl. Phys. Lett. 100 133102
[8] Ebrahim R, Wu N J, Ignatiev A 2012 J. Appl. Phys. 111 034509
[9] Syu Y E, Chang T C, Tsai T M, Chang G W, Chang K C, Tai Y H, Tsai M J, Wang Y L, Sze S M 2012 Appl. Phys. Lett. 100 022904
[10] Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505
[11] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J 2012 Appl. Phys. Lett. 100 083502
[12] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[13] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[14] Allimi B S, Alpay S P, Xie C K, Wells B O, Budnick J I, Pease D M 2008 Appl. Phys. Lett. 92 202105
[15] Wang Y Q, Zhang Z J 2009 Physica E 41 548
[16] Wang Y Q, Zhang Z J, Zhu Y, Li Z C, Vajtai R, Ci L J, Ajayan P M 2008 ACS Nano 2 1492
[17] Kang M, Kim I, Kim S M, Ryu J W, Park H Y 2011 Appl. Phys. Lett. 98 131907
[18] Liu X H, Zhang Y F, Yi S P, Huang C, Liao J, Li H B, Xiao D, Tao H Y 2011 J. Supercrit. Fluid. 56 194
[19] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480 (in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[20] Zhang H, Liu Y S, Liu W H, Wang B Y, Wei L 2007 Acta Phys. Sin. 56 7255 (in Chinese) [张辉, 刘应书, 刘文海, 王宝义, 魏龙 2007 56 7255]
[21] Yan B W 2006 Piezoelectrics Acoustooptics 28 180 (in Chinese) [晏伯武 2006 压电与声光 28 180]
[22] Dejene F B, Ocaya R O 2010 Curr. Appl. Phys. 10 508
[23] Tamura K, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. China 3 48
[24] Son M, Lee J, Park J, Shin J 2011 IEEE Electr. Device Lett. 32 1579
-
[1] Yoshio Nishi 2011 Curr. Appl. Phys. 11 101
[2] Chen C, Pan F, Wang Z S, Yang J, Zeng F 2012 J. Appl. Phys. 111 013702
[3] Fang Z, Yu H Y, Chroboczek J A, Ghibaudo G, Buckley J, Salvo B D, Li X, Kwong D L 2012 IEEE Electr. Device Lett. 59 850
[4] Sawa A 2008 Mater. Today 11 28
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2623
[6] Panda D, Huang C Y, Tseng T Y 2012 Appl. Phys. Lett. 100 112901
[7] Clima S, Chen Y Y, Degraeve R, Mees M, Sankaran K, Govoreanu B, Jurczak M, Gendt S D, Pourtois G 2012 Appl. Phys. Lett. 100 133102
[8] Ebrahim R, Wu N J, Ignatiev A 2012 J. Appl. Phys. 111 034509
[9] Syu Y E, Chang T C, Tsai T M, Chang G W, Chang K C, Tai Y H, Tsai M J, Wang Y L, Sze S M 2012 Appl. Phys. Lett. 100 022904
[10] Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505
[11] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J 2012 Appl. Phys. Lett. 100 083502
[12] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[13] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[14] Allimi B S, Alpay S P, Xie C K, Wells B O, Budnick J I, Pease D M 2008 Appl. Phys. Lett. 92 202105
[15] Wang Y Q, Zhang Z J 2009 Physica E 41 548
[16] Wang Y Q, Zhang Z J, Zhu Y, Li Z C, Vajtai R, Ci L J, Ajayan P M 2008 ACS Nano 2 1492
[17] Kang M, Kim I, Kim S M, Ryu J W, Park H Y 2011 Appl. Phys. Lett. 98 131907
[18] Liu X H, Zhang Y F, Yi S P, Huang C, Liao J, Li H B, Xiao D, Tao H Y 2011 J. Supercrit. Fluid. 56 194
[19] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480 (in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[20] Zhang H, Liu Y S, Liu W H, Wang B Y, Wei L 2007 Acta Phys. Sin. 56 7255 (in Chinese) [张辉, 刘应书, 刘文海, 王宝义, 魏龙 2007 56 7255]
[21] Yan B W 2006 Piezoelectrics Acoustooptics 28 180 (in Chinese) [晏伯武 2006 压电与声光 28 180]
[22] Dejene F B, Ocaya R O 2010 Curr. Appl. Phys. 10 508
[23] Tamura K, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. China 3 48
[24] Son M, Lee J, Park J, Shin J 2011 IEEE Electr. Device Lett. 32 1579
计量
- 文章访问数: 7023
- PDF下载量: 999
- 被引次数: 0