-
Vanadium oxide thin films are deposited on Cu/Ti/SiO2/Si by reactive sputtering at room temperature. The crystal structure, component and surface morphology of VOx film are characterized by X ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy, respectively. These investigations reveal that there is no obvious crystal orientation except weak V2O5 (101) and V2O3 (110) peaks, and the film contains VO2, V2O5, V2O3 and VO mixture phase. The surface particle size of the film is uniform with a root mean square roughness of 1 nm. The resistive switching properties of VOx thin film are tested by semiconductor device analyzer (Agilent B1500A). The I-V characteristics of the VOx memory cell reveal that the cell has low switch voltage (VSetVResetIReset) increases with current compliance increasing. The double-logarithmic plots of the I-V curve for the high and low resistance state show high configuration slope >1 and low resistance state slope=1. It is confirmed that the copper ion diffusion and the formation of conduction filaments may be the resistance switching mechanism of the VOx/Cu structure.
-
Keywords:
- VOx thin films /
- resistive switching /
- resistive random access memory /
- conductive filaments
[1] Yoshio Nishi 2011 Curr. Appl. Phys. 11 101
[2] Chen C, Pan F, Wang Z S, Yang J, Zeng F 2012 J. Appl. Phys. 111 013702
[3] Fang Z, Yu H Y, Chroboczek J A, Ghibaudo G, Buckley J, Salvo B D, Li X, Kwong D L 2012 IEEE Electr. Device Lett. 59 850
[4] Sawa A 2008 Mater. Today 11 28
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2623
[6] Panda D, Huang C Y, Tseng T Y 2012 Appl. Phys. Lett. 100 112901
[7] Clima S, Chen Y Y, Degraeve R, Mees M, Sankaran K, Govoreanu B, Jurczak M, Gendt S D, Pourtois G 2012 Appl. Phys. Lett. 100 133102
[8] Ebrahim R, Wu N J, Ignatiev A 2012 J. Appl. Phys. 111 034509
[9] Syu Y E, Chang T C, Tsai T M, Chang G W, Chang K C, Tai Y H, Tsai M J, Wang Y L, Sze S M 2012 Appl. Phys. Lett. 100 022904
[10] Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505
[11] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J 2012 Appl. Phys. Lett. 100 083502
[12] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[13] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[14] Allimi B S, Alpay S P, Xie C K, Wells B O, Budnick J I, Pease D M 2008 Appl. Phys. Lett. 92 202105
[15] Wang Y Q, Zhang Z J 2009 Physica E 41 548
[16] Wang Y Q, Zhang Z J, Zhu Y, Li Z C, Vajtai R, Ci L J, Ajayan P M 2008 ACS Nano 2 1492
[17] Kang M, Kim I, Kim S M, Ryu J W, Park H Y 2011 Appl. Phys. Lett. 98 131907
[18] Liu X H, Zhang Y F, Yi S P, Huang C, Liao J, Li H B, Xiao D, Tao H Y 2011 J. Supercrit. Fluid. 56 194
[19] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480 (in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[20] Zhang H, Liu Y S, Liu W H, Wang B Y, Wei L 2007 Acta Phys. Sin. 56 7255 (in Chinese) [张辉, 刘应书, 刘文海, 王宝义, 魏龙 2007 56 7255]
[21] Yan B W 2006 Piezoelectrics Acoustooptics 28 180 (in Chinese) [晏伯武 2006 压电与声光 28 180]
[22] Dejene F B, Ocaya R O 2010 Curr. Appl. Phys. 10 508
[23] Tamura K, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. China 3 48
[24] Son M, Lee J, Park J, Shin J 2011 IEEE Electr. Device Lett. 32 1579
-
[1] Yoshio Nishi 2011 Curr. Appl. Phys. 11 101
[2] Chen C, Pan F, Wang Z S, Yang J, Zeng F 2012 J. Appl. Phys. 111 013702
[3] Fang Z, Yu H Y, Chroboczek J A, Ghibaudo G, Buckley J, Salvo B D, Li X, Kwong D L 2012 IEEE Electr. Device Lett. 59 850
[4] Sawa A 2008 Mater. Today 11 28
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2623
[6] Panda D, Huang C Y, Tseng T Y 2012 Appl. Phys. Lett. 100 112901
[7] Clima S, Chen Y Y, Degraeve R, Mees M, Sankaran K, Govoreanu B, Jurczak M, Gendt S D, Pourtois G 2012 Appl. Phys. Lett. 100 133102
[8] Ebrahim R, Wu N J, Ignatiev A 2012 J. Appl. Phys. 111 034509
[9] Syu Y E, Chang T C, Tsai T M, Chang G W, Chang K C, Tai Y H, Tsai M J, Wang Y L, Sze S M 2012 Appl. Phys. Lett. 100 022904
[10] Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505
[11] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J 2012 Appl. Phys. Lett. 100 083502
[12] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[13] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[14] Allimi B S, Alpay S P, Xie C K, Wells B O, Budnick J I, Pease D M 2008 Appl. Phys. Lett. 92 202105
[15] Wang Y Q, Zhang Z J 2009 Physica E 41 548
[16] Wang Y Q, Zhang Z J, Zhu Y, Li Z C, Vajtai R, Ci L J, Ajayan P M 2008 ACS Nano 2 1492
[17] Kang M, Kim I, Kim S M, Ryu J W, Park H Y 2011 Appl. Phys. Lett. 98 131907
[18] Liu X H, Zhang Y F, Yi S P, Huang C, Liao J, Li H B, Xiao D, Tao H Y 2011 J. Supercrit. Fluid. 56 194
[19] Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480 (in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]
[20] Zhang H, Liu Y S, Liu W H, Wang B Y, Wei L 2007 Acta Phys. Sin. 56 7255 (in Chinese) [张辉, 刘应书, 刘文海, 王宝义, 魏龙 2007 56 7255]
[21] Yan B W 2006 Piezoelectrics Acoustooptics 28 180 (in Chinese) [晏伯武 2006 压电与声光 28 180]
[22] Dejene F B, Ocaya R O 2010 Curr. Appl. Phys. 10 508
[23] Tamura K, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. China 3 48
[24] Son M, Lee J, Park J, Shin J 2011 IEEE Electr. Device Lett. 32 1579
Catalog
Metrics
- Abstract views: 7050
- PDF Downloads: 999
- Cited By: 0