-
In this paper, charge trapping memory (CTM) is studied for analyzing the over-erase phenomenon, based on the first principles and VASP package. The nitrogen vacancy (VN) in Si3N4 and the interstitial oxygen (IO) in HfO2 are selected as model, because of the formation energy. The result about trapping energy shows that the electrons are trapped more easily than holes in these models, so the electrons are selected as programming/erase object. The energy after programming/erase operation, Bader charge analysis, different charge densities, adsorption energy and density of states are all studied to explain the over-erase micro change. The energy and electron change show that HfO2 as trapping layer makes CTM more reliable than Si3N4 as trapping layer; and after a programming/erase cycle, electrons in Si3N4 are erased more than programming ones; and the result of adsorption energy shows that the electrons can exchange more easily in Si3N4 than in HfO2. Finally, the research on the density of states shows that Si3N4 has shallow trapping energy level, HfO2 has deep trapping energy level. In conclusion, the essence of the over-erase in Si3N4 is that the atoms near the defect have weaker localized action on the electrons, resulting in the instinct electrons that are erased in erase operation. The over-erase essence is revealed, which is of benefit to improving the reliability and retention.
-
Keywords:
- over-erase /
- HfO2 /
- Si3N4 /
- the first principles
[1] Jin L 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文 (合肥: 安徽大学)]
[2] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, BAI Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888
[3] Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102
[4] Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Elec. Dev. Lett. 29 518
[5] Zeng Y J, Dai Y H, Chen J N 2012 Mater. Struct. 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]
[6] Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Elec. Dev. 51 1143
[7] Cho M K, Kim D M 2000 IEEE Elec. Dev. Lett. 21 399
[8] Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403
[9] Chevrier V L, Zwanziger J W, Dahn J R 2010 J. Alloys Compod. 496 25
[10] Henkelman G, Arnaldsson A, Jónsson H 2006 Computat. Mater. Sci. 36 354
[11] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 62 186301]
[12] Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101
[13] Prada S, Rosa M, Giordano L, Valentin C D, Pacchioni G 2011 Phys. Rev. B 83 245314
[14] Pan Y, Guan W M, Chen S, Zhang K H 2011 Rare Metal Mater. Engineer. 40 80 (in Chinese) [潘勇, 管伟明, 陈松, 张昆华 2011 稀有金属材料与工程 40 80]
[15] Larcher L, Padovani A, Vandelli L, Pavan P 2011 Microelectr. Engineer. 88 1168
[16] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[17] Jarolimek K, de Groot R A, de Wijs G A, Zeman M 2010 Phys. Rev. B 82 205201
[18] Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403
[19] Wang W C, Xiong K, Wallace R M, Cho K 2010 J. Phys. Chem. C 114 22610
[20] Zhao Q, Zhou M X, Zhang W, Liu Q, Li XF, Liu M, Dai Y H 2013 J. Semicond. 34 032001
[21] Giacomazzi L, Umari P 2009 Phys. Rev. B 80 144201
[22] Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101]
[23] Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004
[24] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectr. Engineer. 86 1866
-
[1] Jin L 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文 (合肥: 安徽大学)]
[2] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, BAI Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888
[3] Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102
[4] Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Elec. Dev. Lett. 29 518
[5] Zeng Y J, Dai Y H, Chen J N 2012 Mater. Struct. 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]
[6] Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Elec. Dev. 51 1143
[7] Cho M K, Kim D M 2000 IEEE Elec. Dev. Lett. 21 399
[8] Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403
[9] Chevrier V L, Zwanziger J W, Dahn J R 2010 J. Alloys Compod. 496 25
[10] Henkelman G, Arnaldsson A, Jónsson H 2006 Computat. Mater. Sci. 36 354
[11] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 62 186301]
[12] Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101
[13] Prada S, Rosa M, Giordano L, Valentin C D, Pacchioni G 2011 Phys. Rev. B 83 245314
[14] Pan Y, Guan W M, Chen S, Zhang K H 2011 Rare Metal Mater. Engineer. 40 80 (in Chinese) [潘勇, 管伟明, 陈松, 张昆华 2011 稀有金属材料与工程 40 80]
[15] Larcher L, Padovani A, Vandelli L, Pavan P 2011 Microelectr. Engineer. 88 1168
[16] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[17] Jarolimek K, de Groot R A, de Wijs G A, Zeman M 2010 Phys. Rev. B 82 205201
[18] Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403
[19] Wang W C, Xiong K, Wallace R M, Cho K 2010 J. Phys. Chem. C 114 22610
[20] Zhao Q, Zhou M X, Zhang W, Liu Q, Li XF, Liu M, Dai Y H 2013 J. Semicond. 34 032001
[21] Giacomazzi L, Umari P 2009 Phys. Rev. B 80 144201
[22] Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101]
[23] Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004
[24] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectr. Engineer. 86 1866
Catalog
Metrics
- Abstract views: 6645
- PDF Downloads: 614
- Cited By: 0