搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究

余志强 刘敏丽 郎建勋 钱楷 张昌华

引用本文:
Citation:

基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究

余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华

Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor

Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua
PDF
导出引用
  • 采用简单的一步水热法在FTO导电玻璃上外延生长了锐钛矿TiO2纳米线,制备了具有Au/TiO2/FTO器件结构的锐钛矿TiO2纳米线忆阻器,系统研究了器件的阻变开关特性和开关机理.结果表明,Au/TiO2/FTO忆阻器具有非易失的双极性阻变开关特性.同时,在103 s的时间内,器件在0.1 V的电阻开关比始终保持在20以上,表明器件具有良好的非易失性.此外,器件在低阻态时遵循欧姆导电特性,而在高阻态时则满足陷阱控制的空间电荷限制电流传导机制,同时提出了基于氧空位导电细丝形成与断开机制的阻变开关模型.研究结果表明Au/TiO2/FTO忆阻器将是一种很有发展潜力的下一代非易失性存储器.
    Resistance random access memory is regarded as one of the most promising candidates for the future nonvolatile memory applications due to its good endurance, high storage density, fast erase speed and low power consumption. As one of the most important transition-metal oxides, the anatase TiO2 has received intense attention due to its inexpensive cost, strong optical absorption, favorable band edge positions and superior chemical stability. In the last decade, the nanometer-sized TiO2 has been shown to exhibit a wide range of electrical and optical properties, such as nanoscale electronics and optoelectronics, which rely mainly on the unique size and shape. Recently, various anatase TiO2 based devices such as the anatase TiO2 nanotube based memristor and the anatase TiO2 nano-film based memristor have been intensively studied due to their nonvolatile resistive switching performances. Furthermore, many conduction mechanisms have been used to elucidate the resistive switching behaviors of the anatase TiO2 based devices. However, the direct growth of anatase TiO2 nanowire arrays (NWAs) on the FTO substrate is still a challenge since there exists a large lattice mismatch of about 19% between the anatase TiO2 NWAs and the FTO substrate. Moreover, the Au/TiO2/FTO based device has not been reported and the resistive switching mechanism of the anatase TiO2 NWAs based memristor is still unclear. In this work, the anatase TiO2 NWAs with (101) preferred orientation are successfully grown on the FTO substrate by a facile one-step hydrothermal process. The resistive switching characteristics and resistive switching mechanism of the as-fabricated Au/TiO2/FTO memristor are investigated systemically. The result indicates that the Au/TiO2/FTO memristor exhibits nonvolatile bipolar resistive switching behavior. Meanwhile, the resistance ratio between high resistance state and low resistance state exceeds 20 at 0.1 V, which can be maintained over 103 s without significant degradation. In addition, the conduction mechanism of the low resistance state is governed by the ohmic conduction mechanism, while the trap-controlled space charge limited current conduction mechanism dominates the high resistance state. The resistive switching model of the Au/TiO2/FTO memristor is developed, and the resistive switching mechanism could be attributed to the formation and rupture of the conductive filaments relating to the localized oxygen vacancies. It demonstrates that the Au/TiO2/FTO memristor may be a potential candidate for the future nonvolatile memory applications.
      通信作者: 张昌华, zch-tan@tom.com
    • 基金项目: 国家自然科学基金(批准号:61463014)、湖北省教育厅科学技术研究项目(批准号:B2018087)和湖北民族学院博士启动基金(批准号:MY2018B016)资助的课题.
      Corresponding author: Zhang Chang-Hua, zch-tan@tom.com
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant No. 61463014), the Scientific Research Project of Education Department of Hubei Province, China (Grant No. B2018087), and the Doctoral Fund of Hubei University for Nationalities, China (Grant No. MY2018B016).
    [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429

    [3]

    Chang W Y, Lin C A, He J H, Wu T B 2010 Appl. Phys. Lett. 96 242109

    [4]

    Nagashima K, Yanagida T, Oka K, Taniguchi M, Kawai T, Kim J S, Park B H 2010 Nano Lett. 10 1359

    [5]

    Huang Y C, Chen P Y, Huang K F, Chuang T Z, Lin H H, Chin T S, Liu R S, Lan Y W, Chen C D, Lai C H 2014 NPG Asia Mater. 6 e85

    [6]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247

    [7]

    Shirolkar M M, Hao C, Dong X, Guo T, Zhang L, Li M, Wang H 2014 Nanoscale 6 4735

    [8]

    Younis A, Chu D, Li S 2013 Appl. Phys. Lett. 103 253504

    [9]

    Younis A, Chu D, Li S 2013 RSC Adv. 3 13422

    [10]

    Sun B, Li C M 2015 Phys. Chem. Chem. Phys. 17 6718

    [11]

    Wu W Q, Lei B X, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1352

    [12]

    Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A 2008 J. Phys. Chem. C 112 253

    [13]

    Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A 2006 Sens. Lett. 4 334

    [14]

    Yoo H K, Lee S B, Lee J S, Chang S H 2011 Appl. Phys. Lett. 98 183507

    [15]

    Yu Z Q, Qu X P, Yang W P, Peng J, Xu Z M 2016 J. Alloys Compd. 688 37

    [16]

    Ortiz G F, Hanzu I, Djenizian T, Lavela P, Tirado J L, Knauth P 2009 Chem. Mater. 21 63

    [17]

    Yoo J E, Lee K Y, Tighineanu A, Schmuki P 2013 Electrochem. Commun. 34 177

    [18]

    Dongale T D, Shinde S S, Kamat R K, Rajpure K Y 2014 J. Alloys Compd. 593 267

    [19]

    Conti D, Lamberti A, Porro S, Rivolo P, Chiolerio A, Pirri C F, Ricciardi C 2016 Nanotechnology 27 485208

    [20]

    In S I I, Almtoft K P, Lee H, Andersen I H, Qin D D, Bao N Z, Grimes C A 2012 Bull. Korean Chem. Soc. 33 1989

    [21]

    Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X 2001 Appl. Phys. Lett. 78 1125

    [22]

    Wu J J, Yu C C 2004 J. Phys. Chem. B 108 3377

    [23]

    Wu Y H, Long M C, Cai W M, Dai S D, Chen C, Wu D Y, Bai J 2009 Nanotechnology 20 185703

    [24]

    Wu W Q, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1892

    [25]

    Wu W Q, Feng H L, Rao H S, Xu Y F, Kuang D B, Su C Y 2014 Nat. Commun. 5 3968

    [26]

    Nguyen C K, Cha H G, Kang Y S 2011 Cryst. Growth Des. 11 3947

    [27]

    Santara B, Giri P K, Imakita K, Fyjii M 2013 Nanoscale 5 5476

    [28]

    Gopel W, Anderson J, Frankel D, Jaehnig M, Phillips K, Schafer J A, Rocker G 1984 Surf. Sci. 139 333

    [29]

    Bogle K A, Bachhav M N, Deo M S, Valanoor N, Ogale S B 2009 Appl. Phys. Lett. 95 203502

    [30]

    Zhen C, Wang L Z, Liu L, Liu G, Lu G Q, Cheng H M 2013 Chem. Commun. 49 6191

    [31]

    Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [32]

    Chang Y F, Fowler B, Chen Y C, Lee J C 2014 J. Appl. Phys. 116 043709

    [33]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [34]

    Wu Y L, Lin S T 2006 IEEE Trans. Devi. Mater. Reliab. 6 75

    [35]

    Lin C Y, Wang S Y, Lee D Y, Tseng T Y 2008 J. Electrochem. Soc. 155 H615

    [36]

    Kim Y M, Lee J S 2008 J. Appl. Phys. 104 114115

    [37]

    Liu Q, Guan W H, Long S B, Chen J N 2008 Appl. Phys. Lett. 92 012117

    [38]

    Kim K M, Choi B J, Shin Y C, Choi S, Hwang C S 2007 Appl. Phys. Lett. 91 012907

  • [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429

    [3]

    Chang W Y, Lin C A, He J H, Wu T B 2010 Appl. Phys. Lett. 96 242109

    [4]

    Nagashima K, Yanagida T, Oka K, Taniguchi M, Kawai T, Kim J S, Park B H 2010 Nano Lett. 10 1359

    [5]

    Huang Y C, Chen P Y, Huang K F, Chuang T Z, Lin H H, Chin T S, Liu R S, Lan Y W, Chen C D, Lai C H 2014 NPG Asia Mater. 6 e85

    [6]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247

    [7]

    Shirolkar M M, Hao C, Dong X, Guo T, Zhang L, Li M, Wang H 2014 Nanoscale 6 4735

    [8]

    Younis A, Chu D, Li S 2013 Appl. Phys. Lett. 103 253504

    [9]

    Younis A, Chu D, Li S 2013 RSC Adv. 3 13422

    [10]

    Sun B, Li C M 2015 Phys. Chem. Chem. Phys. 17 6718

    [11]

    Wu W Q, Lei B X, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1352

    [12]

    Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A 2008 J. Phys. Chem. C 112 253

    [13]

    Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A 2006 Sens. Lett. 4 334

    [14]

    Yoo H K, Lee S B, Lee J S, Chang S H 2011 Appl. Phys. Lett. 98 183507

    [15]

    Yu Z Q, Qu X P, Yang W P, Peng J, Xu Z M 2016 J. Alloys Compd. 688 37

    [16]

    Ortiz G F, Hanzu I, Djenizian T, Lavela P, Tirado J L, Knauth P 2009 Chem. Mater. 21 63

    [17]

    Yoo J E, Lee K Y, Tighineanu A, Schmuki P 2013 Electrochem. Commun. 34 177

    [18]

    Dongale T D, Shinde S S, Kamat R K, Rajpure K Y 2014 J. Alloys Compd. 593 267

    [19]

    Conti D, Lamberti A, Porro S, Rivolo P, Chiolerio A, Pirri C F, Ricciardi C 2016 Nanotechnology 27 485208

    [20]

    In S I I, Almtoft K P, Lee H, Andersen I H, Qin D D, Bao N Z, Grimes C A 2012 Bull. Korean Chem. Soc. 33 1989

    [21]

    Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X 2001 Appl. Phys. Lett. 78 1125

    [22]

    Wu J J, Yu C C 2004 J. Phys. Chem. B 108 3377

    [23]

    Wu Y H, Long M C, Cai W M, Dai S D, Chen C, Wu D Y, Bai J 2009 Nanotechnology 20 185703

    [24]

    Wu W Q, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1892

    [25]

    Wu W Q, Feng H L, Rao H S, Xu Y F, Kuang D B, Su C Y 2014 Nat. Commun. 5 3968

    [26]

    Nguyen C K, Cha H G, Kang Y S 2011 Cryst. Growth Des. 11 3947

    [27]

    Santara B, Giri P K, Imakita K, Fyjii M 2013 Nanoscale 5 5476

    [28]

    Gopel W, Anderson J, Frankel D, Jaehnig M, Phillips K, Schafer J A, Rocker G 1984 Surf. Sci. 139 333

    [29]

    Bogle K A, Bachhav M N, Deo M S, Valanoor N, Ogale S B 2009 Appl. Phys. Lett. 95 203502

    [30]

    Zhen C, Wang L Z, Liu L, Liu G, Lu G Q, Cheng H M 2013 Chem. Commun. 49 6191

    [31]

    Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [32]

    Chang Y F, Fowler B, Chen Y C, Lee J C 2014 J. Appl. Phys. 116 043709

    [33]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [34]

    Wu Y L, Lin S T 2006 IEEE Trans. Devi. Mater. Reliab. 6 75

    [35]

    Lin C Y, Wang S Y, Lee D Y, Tseng T Y 2008 J. Electrochem. Soc. 155 H615

    [36]

    Kim Y M, Lee J S 2008 J. Appl. Phys. 104 114115

    [37]

    Liu Q, Guan W H, Long S B, Chen J N 2008 Appl. Phys. Lett. 92 012117

    [38]

    Kim K M, Choi B J, Shin Y C, Choi S, Hwang C S 2007 Appl. Phys. Lett. 91 012907

  • [1] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性.  , 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [2] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究.  , 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [3] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成.  , 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究.  , 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [5] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [6] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究.  , 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [7] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [8] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响.  , 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [9] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布.  , 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [10] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展.  , 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [11] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究.  , 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [12] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究.  , 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [13] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响.  , 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [14] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响.  , 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究.  , 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [17] 李智炜, 刘海军, 徐欣. 忆阻逾渗导电模型中的初态影响.  , 2013, 62(9): 096401. doi: 10.7498/aps.62.096401
    [18] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响.  , 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [20] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
计量
  • 文章访问数:  8646
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-05-02
  • 刊出日期:  2018-08-05

/

返回文章
返回
Baidu
map