Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor

Yu Zhi-Qiang Liu Min-Li Lang Jian-Xun Qian Kai Zhang Chang-Hua

Citation:

Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor

Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Resistance random access memory is regarded as one of the most promising candidates for the future nonvolatile memory applications due to its good endurance, high storage density, fast erase speed and low power consumption. As one of the most important transition-metal oxides, the anatase TiO2 has received intense attention due to its inexpensive cost, strong optical absorption, favorable band edge positions and superior chemical stability. In the last decade, the nanometer-sized TiO2 has been shown to exhibit a wide range of electrical and optical properties, such as nanoscale electronics and optoelectronics, which rely mainly on the unique size and shape. Recently, various anatase TiO2 based devices such as the anatase TiO2 nanotube based memristor and the anatase TiO2 nano-film based memristor have been intensively studied due to their nonvolatile resistive switching performances. Furthermore, many conduction mechanisms have been used to elucidate the resistive switching behaviors of the anatase TiO2 based devices. However, the direct growth of anatase TiO2 nanowire arrays (NWAs) on the FTO substrate is still a challenge since there exists a large lattice mismatch of about 19% between the anatase TiO2 NWAs and the FTO substrate. Moreover, the Au/TiO2/FTO based device has not been reported and the resistive switching mechanism of the anatase TiO2 NWAs based memristor is still unclear. In this work, the anatase TiO2 NWAs with (101) preferred orientation are successfully grown on the FTO substrate by a facile one-step hydrothermal process. The resistive switching characteristics and resistive switching mechanism of the as-fabricated Au/TiO2/FTO memristor are investigated systemically. The result indicates that the Au/TiO2/FTO memristor exhibits nonvolatile bipolar resistive switching behavior. Meanwhile, the resistance ratio between high resistance state and low resistance state exceeds 20 at 0.1 V, which can be maintained over 103 s without significant degradation. In addition, the conduction mechanism of the low resistance state is governed by the ohmic conduction mechanism, while the trap-controlled space charge limited current conduction mechanism dominates the high resistance state. The resistive switching model of the Au/TiO2/FTO memristor is developed, and the resistive switching mechanism could be attributed to the formation and rupture of the conductive filaments relating to the localized oxygen vacancies. It demonstrates that the Au/TiO2/FTO memristor may be a potential candidate for the future nonvolatile memory applications.
      Corresponding author: Zhang Chang-Hua, zch-tan@tom.com
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant No. 61463014), the Scientific Research Project of Education Department of Hubei Province, China (Grant No. B2018087), and the Doctoral Fund of Hubei University for Nationalities, China (Grant No. MY2018B016).
    [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429

    [3]

    Chang W Y, Lin C A, He J H, Wu T B 2010 Appl. Phys. Lett. 96 242109

    [4]

    Nagashima K, Yanagida T, Oka K, Taniguchi M, Kawai T, Kim J S, Park B H 2010 Nano Lett. 10 1359

    [5]

    Huang Y C, Chen P Y, Huang K F, Chuang T Z, Lin H H, Chin T S, Liu R S, Lan Y W, Chen C D, Lai C H 2014 NPG Asia Mater. 6 e85

    [6]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247

    [7]

    Shirolkar M M, Hao C, Dong X, Guo T, Zhang L, Li M, Wang H 2014 Nanoscale 6 4735

    [8]

    Younis A, Chu D, Li S 2013 Appl. Phys. Lett. 103 253504

    [9]

    Younis A, Chu D, Li S 2013 RSC Adv. 3 13422

    [10]

    Sun B, Li C M 2015 Phys. Chem. Chem. Phys. 17 6718

    [11]

    Wu W Q, Lei B X, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1352

    [12]

    Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A 2008 J. Phys. Chem. C 112 253

    [13]

    Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A 2006 Sens. Lett. 4 334

    [14]

    Yoo H K, Lee S B, Lee J S, Chang S H 2011 Appl. Phys. Lett. 98 183507

    [15]

    Yu Z Q, Qu X P, Yang W P, Peng J, Xu Z M 2016 J. Alloys Compd. 688 37

    [16]

    Ortiz G F, Hanzu I, Djenizian T, Lavela P, Tirado J L, Knauth P 2009 Chem. Mater. 21 63

    [17]

    Yoo J E, Lee K Y, Tighineanu A, Schmuki P 2013 Electrochem. Commun. 34 177

    [18]

    Dongale T D, Shinde S S, Kamat R K, Rajpure K Y 2014 J. Alloys Compd. 593 267

    [19]

    Conti D, Lamberti A, Porro S, Rivolo P, Chiolerio A, Pirri C F, Ricciardi C 2016 Nanotechnology 27 485208

    [20]

    In S I I, Almtoft K P, Lee H, Andersen I H, Qin D D, Bao N Z, Grimes C A 2012 Bull. Korean Chem. Soc. 33 1989

    [21]

    Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X 2001 Appl. Phys. Lett. 78 1125

    [22]

    Wu J J, Yu C C 2004 J. Phys. Chem. B 108 3377

    [23]

    Wu Y H, Long M C, Cai W M, Dai S D, Chen C, Wu D Y, Bai J 2009 Nanotechnology 20 185703

    [24]

    Wu W Q, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1892

    [25]

    Wu W Q, Feng H L, Rao H S, Xu Y F, Kuang D B, Su C Y 2014 Nat. Commun. 5 3968

    [26]

    Nguyen C K, Cha H G, Kang Y S 2011 Cryst. Growth Des. 11 3947

    [27]

    Santara B, Giri P K, Imakita K, Fyjii M 2013 Nanoscale 5 5476

    [28]

    Gopel W, Anderson J, Frankel D, Jaehnig M, Phillips K, Schafer J A, Rocker G 1984 Surf. Sci. 139 333

    [29]

    Bogle K A, Bachhav M N, Deo M S, Valanoor N, Ogale S B 2009 Appl. Phys. Lett. 95 203502

    [30]

    Zhen C, Wang L Z, Liu L, Liu G, Lu G Q, Cheng H M 2013 Chem. Commun. 49 6191

    [31]

    Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [32]

    Chang Y F, Fowler B, Chen Y C, Lee J C 2014 J. Appl. Phys. 116 043709

    [33]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [34]

    Wu Y L, Lin S T 2006 IEEE Trans. Devi. Mater. Reliab. 6 75

    [35]

    Lin C Y, Wang S Y, Lee D Y, Tseng T Y 2008 J. Electrochem. Soc. 155 H615

    [36]

    Kim Y M, Lee J S 2008 J. Appl. Phys. 104 114115

    [37]

    Liu Q, Guan W H, Long S B, Chen J N 2008 Appl. Phys. Lett. 92 012117

    [38]

    Kim K M, Choi B J, Shin Y C, Choi S, Hwang C S 2007 Appl. Phys. Lett. 91 012907

  • [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429

    [3]

    Chang W Y, Lin C A, He J H, Wu T B 2010 Appl. Phys. Lett. 96 242109

    [4]

    Nagashima K, Yanagida T, Oka K, Taniguchi M, Kawai T, Kim J S, Park B H 2010 Nano Lett. 10 1359

    [5]

    Huang Y C, Chen P Y, Huang K F, Chuang T Z, Lin H H, Chin T S, Liu R S, Lan Y W, Chen C D, Lai C H 2014 NPG Asia Mater. 6 e85

    [6]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247

    [7]

    Shirolkar M M, Hao C, Dong X, Guo T, Zhang L, Li M, Wang H 2014 Nanoscale 6 4735

    [8]

    Younis A, Chu D, Li S 2013 Appl. Phys. Lett. 103 253504

    [9]

    Younis A, Chu D, Li S 2013 RSC Adv. 3 13422

    [10]

    Sun B, Li C M 2015 Phys. Chem. Chem. Phys. 17 6718

    [11]

    Wu W Q, Lei B X, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1352

    [12]

    Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A 2008 J. Phys. Chem. C 112 253

    [13]

    Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A 2006 Sens. Lett. 4 334

    [14]

    Yoo H K, Lee S B, Lee J S, Chang S H 2011 Appl. Phys. Lett. 98 183507

    [15]

    Yu Z Q, Qu X P, Yang W P, Peng J, Xu Z M 2016 J. Alloys Compd. 688 37

    [16]

    Ortiz G F, Hanzu I, Djenizian T, Lavela P, Tirado J L, Knauth P 2009 Chem. Mater. 21 63

    [17]

    Yoo J E, Lee K Y, Tighineanu A, Schmuki P 2013 Electrochem. Commun. 34 177

    [18]

    Dongale T D, Shinde S S, Kamat R K, Rajpure K Y 2014 J. Alloys Compd. 593 267

    [19]

    Conti D, Lamberti A, Porro S, Rivolo P, Chiolerio A, Pirri C F, Ricciardi C 2016 Nanotechnology 27 485208

    [20]

    In S I I, Almtoft K P, Lee H, Andersen I H, Qin D D, Bao N Z, Grimes C A 2012 Bull. Korean Chem. Soc. 33 1989

    [21]

    Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X 2001 Appl. Phys. Lett. 78 1125

    [22]

    Wu J J, Yu C C 2004 J. Phys. Chem. B 108 3377

    [23]

    Wu Y H, Long M C, Cai W M, Dai S D, Chen C, Wu D Y, Bai J 2009 Nanotechnology 20 185703

    [24]

    Wu W Q, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B 2013 Sci. Rep. 3 1892

    [25]

    Wu W Q, Feng H L, Rao H S, Xu Y F, Kuang D B, Su C Y 2014 Nat. Commun. 5 3968

    [26]

    Nguyen C K, Cha H G, Kang Y S 2011 Cryst. Growth Des. 11 3947

    [27]

    Santara B, Giri P K, Imakita K, Fyjii M 2013 Nanoscale 5 5476

    [28]

    Gopel W, Anderson J, Frankel D, Jaehnig M, Phillips K, Schafer J A, Rocker G 1984 Surf. Sci. 139 333

    [29]

    Bogle K A, Bachhav M N, Deo M S, Valanoor N, Ogale S B 2009 Appl. Phys. Lett. 95 203502

    [30]

    Zhen C, Wang L Z, Liu L, Liu G, Lu G Q, Cheng H M 2013 Chem. Commun. 49 6191

    [31]

    Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [32]

    Chang Y F, Fowler B, Chen Y C, Lee J C 2014 J. Appl. Phys. 116 043709

    [33]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [34]

    Wu Y L, Lin S T 2006 IEEE Trans. Devi. Mater. Reliab. 6 75

    [35]

    Lin C Y, Wang S Y, Lee D Y, Tseng T Y 2008 J. Electrochem. Soc. 155 H615

    [36]

    Kim Y M, Lee J S 2008 J. Appl. Phys. 104 114115

    [37]

    Liu Q, Guan W H, Long S B, Chen J N 2008 Appl. Phys. Lett. 92 012117

    [38]

    Kim K M, Choi B J, Shin Y C, Choi S, Hwang C S 2007 Appl. Phys. Lett. 91 012907

  • [1] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [2] Ke Qing, Dai Yue-Hua. Kinetics study of ions in conductive filament growth process of electrochemical metallization resistive memory. Acta Physica Sinica, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [3] Shi Xiao-Hong, Chen Jing-Jin, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Formation of oxygen vacancies in Li-rich Mn-based cathode material Li1.167Ni0.167Co0.167Mn0.5O2. Acta Physica Sinica, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [5] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [6] Sun Zhi-Gang, Pang Yu-Yu, Hu Jing-Hua, He Xiong, Li Yue-Chou. Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation. Acta Physica Sinica, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [7] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [8] Guo Yu-Quan, Duan Shu-Kai, Wang Li-Dan. Influence of length parameter on the characteristics of nanoscale titanium oxide memristor. Acta Physica Sinica, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [9] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [10] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [11] Pang Hua, Deng Ning. Electric characteristics and resistive switching mechanism of Ni/HfO2/Pt resistive random access memory cell. Acta Physica Sinica, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [12] Dong Zhe-Kang, Duan Shu-Kai, Hu Xiao-Fang, Wang Li-Dan. Two types of nanoscale nonlinear memristor models and their series-parallel circuits. Acta Physica Sinica, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [13] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [14] Tian Xiao-Bo, Xu Hui, Li Qing-Jiang. Influence of the cross section area on the conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [15] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] Wei Xiao-Ying, Hu Ming, Zhang Kai-Liang, Wang Fang, Liu Kai. Micro-structural and resistive switching properties of vanadium oxide thin films. Acta Physica Sinica, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [17] Li Zhi-Wei, Liu Hai-Jun, Xu Xin. Effects of pristine state on conductive percolation model of memristor. Acta Physica Sinica, 2013, 62(9): 096401. doi: 10.7498/aps.62.096401
    [18] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [20] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
Metrics
  • Abstract views:  8624
  • PDF Downloads:  413
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2018
  • Accepted Date:  02 May 2018
  • Published Online:  05 August 2018

/

返回文章
返回
Baidu
map