Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of CC bond breakage on diamond tool wear in nanometric cutting of silicon

Wang Zhi-Guo Zhang Peng Chen Jia-Xuan Bai Qing-Shun Liang Ying-Chu

Citation:

Effect of CC bond breakage on diamond tool wear in nanometric cutting of silicon

Wang Zhi-Guo, Zhang Peng, Chen Jia-Xuan, Bai Qing-Shun, Liang Ying-Chu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is well known that diamond is one of the most ideal cutting tool for materials, but the rapid tool wear can make surface integrity of the machined surface decline sharply during the nanometric cutting process for a single crystal silicon. Thus, a research on the wear mechanism of the diamond tool is of tremendous importance for selecting measures to reduce tool wear so as to extend service life of the tool. In this paper, the molecular dynamics simulation is applied to investigating the wear of the diamond tool during nanometric cutting for the single crystal silicon. Tersoff potential is used to describe the CC and SiSi interactions, and also the Morse potential for the CSi interaction. The rake and flank faces are diamond (111) and (112) planes respectively. A new method, by the name of 6-ring, is proposed to describe the bond change of carbon atoms. This new method can extract, all the worn carbon atoms in diamond tool, whose accuracy is higher than the conventional coordination number method. Moreover, the graphitized carbon atoms in the diamond tool also can be extracted by the combination of these two methods. Results show that during the cutting process, the CC bond's breaking in the surface layer of the diamond tool leads to the transformation of hybrid structure of the carbon atoms at both ends of the broken bond, from sp3 to sp2. Following to the bond breaking, the bond angle between the surface carbon atoms increases to 119.3 whose hybrid structure has changed, and the length between nearest neighboring atoms quickly decreases to 0.144 nm, indicating that the space structure formed by these carbon atoms has changed from 3D net structure of diamond to plane structure of graphite. Hence, the carbon atoms in the tool surface whose space structure has changed due to bond breaking should be defined as worn carbon atoms, but not only the carbon atoms whose hybrid structure has changed. The structure defects at both edges of the diamond tool are much more serious, which make the energy of CC bonds at the edges weakened with the enhancement of defects. The bonds with lower energy are broken under the effect of high temperature and shear stress, which also produces the tool wear. The graphitization occurs at the tool of the cutting tool because the structure defects there are the most serious. The reconstruction of the carbon atoms with lower coordination number causes its neighboring region to produce serious distortion, which leads to easy breaking of CC bonds in this region.
      Corresponding author: Zhang Peng, zphit@hit.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2013M541362), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201308).
    [1]

    Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358

    [2]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [3]

    Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703

    [4]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131

    [5]

    Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366

    [6]

    Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380

    [7]

    Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751

    [8]

    Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678

    [9]

    Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427

    [10]

    Li X P, He T, Rahman M 2005 Wear 259 1207

    [11]

    Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224

    [12]

    Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029

    [13]

    Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617

    [14]

    Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272

    [15]

    Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]

    [16]

    Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Cai M B, Li X P, Rahman M 2007 Wear 263 1459

    [19]

    [2014]

    [20]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378

    [21]

    Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863

    [22]

    Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663

    [23]

    Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904

    [24]

    Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]

    [25]

    Gilman J J 1995 Czech. J. Phys. 45 913

    [26]

    Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921

    [27]

    Li L S, Zhao X 2011 J. Chem. Phys. 134 044711

    [28]

    Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]

    [29]

    Ge Y F, Xu J H, Yang H 2010 Wear 269 699

    [30]

    Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [31]

    Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573

  • [1]

    Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358

    [2]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [3]

    Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703

    [4]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131

    [5]

    Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366

    [6]

    Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380

    [7]

    Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751

    [8]

    Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678

    [9]

    Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427

    [10]

    Li X P, He T, Rahman M 2005 Wear 259 1207

    [11]

    Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224

    [12]

    Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029

    [13]

    Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617

    [14]

    Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272

    [15]

    Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]

    [16]

    Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Cai M B, Li X P, Rahman M 2007 Wear 263 1459

    [19]

    [2014]

    [20]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378

    [21]

    Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863

    [22]

    Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663

    [23]

    Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904

    [24]

    Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]

    [25]

    Gilman J J 1995 Czech. J. Phys. 45 913

    [26]

    Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921

    [27]

    Li L S, Zhao X 2011 J. Chem. Phys. 134 044711

    [28]

    Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]

    [29]

    Ge Y F, Xu J H, Yang H 2010 Wear 269 699

    [30]

    Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [31]

    Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573

  • [1] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [3] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [5] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [6] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] Lan Hui-Qing, Xu Cang. Molecular dynamics simulation on friction process of silicon-doped diamond-like carbon films. Acta Physica Sinica, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [8] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [9] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [10] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [11] Liang Ying-Chun, Pen Hong-Min, Bai Qing-Shun, Lu Li-Hua. Multiscale simulation of nanometric cutting of single crystal Cu based on bridging domain method. Acta Physica Sinica, 2011, 60(10): 100205. doi: 10.7498/aps.60.100205
    [12] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian. Construction of metallic nanocrystalline samples by molecular dynamics simulation. Acta Physica Sinica, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin. Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature. Acta Physica Sinica, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [14] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [15] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [16] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [18] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [19] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  7081
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2015
  • Accepted Date:  09 July 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map