搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模

厉巧巧 张昕 吴江滨 鲁妍 谭平恒 冯志红 李佳 蔚翠 刘庆斌

引用本文:
Citation:

双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模

厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌

The second-order combination Raman modes of bilayer graphene in the range of 1800-2150 cm-1

Li Qiao-Qiao, Zhang Xin, Wu Jiang-Bin, Lu Yan, Tan Ping-Heng, Feng Zhi-Hong, Li Jia, Wei Cui, Liu Qing-Bin
PDF
导出引用
  • 文章利用拉曼光谱研究了双层石墨烯在18002150 cm-1范围内的和频拉曼模. 基于双共振拉曼散射理论,利用多波长激光拉曼散射结合声子色散曲线分别从实验上和理论上分析发现,双层石墨烯在此频率范围内主要存在4个拉曼模,它们主要由LO和LA或iTA按不同共振散射方式所组成的4个和频模,而iTO 和oTO 参与和频的可能性很小. 文章澄清了学术界在18002150 cm-1频率范围内和频模的解释,有助于进一步深入理解多层石墨烯在此范围内的和频模.
    In this paper, Raman modes of bi-layer graphene are investigated in detail in the frequency region between 1800 and 2150 cm-1. There are four dominant Raman modes in this frequency region. The frequencies of these modes dependent on excitation energy are revealed from the measurement with multi-wavelength lasers, which can be fully understood based on double resonance Raman scattering and the phonon dispersion relation of monolayer graphene. The results show that these Raman modes can be assigned to the combinational modes from the fundamental modes of iTA, LA and LO phonons, but not from iTO and oTO phonons as reported in the previous works. This study benefits us toward the full understanding of lattice dynamics of monolayer and multilayer graphenes.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB929301)、国家自然科学基金(批准号:11225421,10934007)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. G2009CB929301), and the National Natural Science Foundation of China (Grant Nos. 11225421, 10934007).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [5]

    Castro E V, Novoselov K S, Morozov S V, Peres N M R, Lopes dos Santos J M B, Nilsson J, Guinea F, Geim A K, Castro Neto A H 2007 Phys. Rev. Lett. 99 216802

    [6]

    McCann E 2006 Phys. Rev. B 74 161403

    [7]

    Min H, Sahu B, Banerjee S K, MacDonald A H 2007 Phys. Rev. B 75 155115

    [8]

    Tuinstra F, Koenig J L 1970 J. Chem. Phys. 53 1126

    [9]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5453

    [10]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [11]

    Tan P H, An L, Liu L Q, Guo Z X, Czerw R, Carroll D L, Ajayan P M, Zhang N, Guo H L 2002 Phys. Rev. B 66 245410

    [12]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [13]

    Cong C X, Yu T, Saito R, Dresselhaus G F, Dresselhaus M S 2011 ACS Nano 5 1600

    [14]

    Rao R, Podila R, Tsuchikawa R, Katoch J, Tishler D, Rao A M, Ishigami M 2011 ACS Nano 5 1594

    [15]

    Sato K, Park J S, Saito R, Cong C, Yu T, Lui C H, Heinz T F, Dresselhaus G, Dresselhaus M S 2011 Phys. Rev. B 84 035419

    [16]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [17]

    Niu Z Q, Fang Y 2007 Acta Phys. Sin. 56 1796 (in Chinese) [牛志强, 方炎 2007 56 1796]

    [18]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [19]

    Li Q Q, Han W P, Zhao W J, Lu Y, Zhang X, Tan P H, Feng Z H, Li J 2013 Acta Phys. Sin. 62 137801 (in Chinese) [厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳 2013 62 137801]

    [20]

    Zhao W J, Tan P H, Zhang J, Liu J A 2010 Phys. Rev. B 82 245423

    [21]

    Zhao W J, Tan P H, Liu J, Ferrari A C 2011 J. Am. Chem. Soc. 133 5941

    [22]

    Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X 2007 Nano Lett. 7 2758

    [23]

    HanW P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [24]

    Tan P H, Deng Y M, Zhao Q, Cheng W C 1999 Appl. Phys. Lett. 74 1818

    [25]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [26]

    Tan P H, Hu C Y, Dong J, Shen W C 2007 Physica E 37 93

    [27]

    Thomsen C, Reich S 2000 Phys. Rev. Lett. 85 5214

    [28]

    Saito R, Jorio A, Souza A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys. Rev. Lett. 88 027401

    [29]

    Malard L M, Guimarães M H D, Mafra D L, Mazzoni M S C, Jorio A 2009 Phys. Rev. B 79 125426

    [30]

    Wang H, You J H, Wang L, Feng M, Wang Y F 2010 J. Raman Spectrosc. 41 125

    [31]

    Piscanec S, Lazzeri M, Mauri F, Ferrari A C, Robertson J 2004 Phys. Rev. Lett. 93 185503

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [5]

    Castro E V, Novoselov K S, Morozov S V, Peres N M R, Lopes dos Santos J M B, Nilsson J, Guinea F, Geim A K, Castro Neto A H 2007 Phys. Rev. Lett. 99 216802

    [6]

    McCann E 2006 Phys. Rev. B 74 161403

    [7]

    Min H, Sahu B, Banerjee S K, MacDonald A H 2007 Phys. Rev. B 75 155115

    [8]

    Tuinstra F, Koenig J L 1970 J. Chem. Phys. 53 1126

    [9]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5453

    [10]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [11]

    Tan P H, An L, Liu L Q, Guo Z X, Czerw R, Carroll D L, Ajayan P M, Zhang N, Guo H L 2002 Phys. Rev. B 66 245410

    [12]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [13]

    Cong C X, Yu T, Saito R, Dresselhaus G F, Dresselhaus M S 2011 ACS Nano 5 1600

    [14]

    Rao R, Podila R, Tsuchikawa R, Katoch J, Tishler D, Rao A M, Ishigami M 2011 ACS Nano 5 1594

    [15]

    Sato K, Park J S, Saito R, Cong C, Yu T, Lui C H, Heinz T F, Dresselhaus G, Dresselhaus M S 2011 Phys. Rev. B 84 035419

    [16]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [17]

    Niu Z Q, Fang Y 2007 Acta Phys. Sin. 56 1796 (in Chinese) [牛志强, 方炎 2007 56 1796]

    [18]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [19]

    Li Q Q, Han W P, Zhao W J, Lu Y, Zhang X, Tan P H, Feng Z H, Li J 2013 Acta Phys. Sin. 62 137801 (in Chinese) [厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳 2013 62 137801]

    [20]

    Zhao W J, Tan P H, Zhang J, Liu J A 2010 Phys. Rev. B 82 245423

    [21]

    Zhao W J, Tan P H, Liu J, Ferrari A C 2011 J. Am. Chem. Soc. 133 5941

    [22]

    Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X 2007 Nano Lett. 7 2758

    [23]

    HanW P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [24]

    Tan P H, Deng Y M, Zhao Q, Cheng W C 1999 Appl. Phys. Lett. 74 1818

    [25]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [26]

    Tan P H, Hu C Y, Dong J, Shen W C 2007 Physica E 37 93

    [27]

    Thomsen C, Reich S 2000 Phys. Rev. Lett. 85 5214

    [28]

    Saito R, Jorio A, Souza A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys. Rev. Lett. 88 027401

    [29]

    Malard L M, Guimarães M H D, Mafra D L, Mazzoni M S C, Jorio A 2009 Phys. Rev. B 79 125426

    [30]

    Wang H, You J H, Wang L, Feng M, Wang Y F 2010 J. Raman Spectrosc. 41 125

    [31]

    Piscanec S, Lazzeri M, Mauri F, Ferrari A C, Robertson J 2004 Phys. Rev. Lett. 93 185503

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] 曲良辉, 都琳, 曹子露, 胡海威, 邓子辰. 化学自突触的电导扰动诱导相干或随机双共振现象.  , 2020, 69(23): 230501. doi: 10.7498/aps.69.20200856
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究.  , 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [9] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究.  , 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [10] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [11] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波.  , 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [12] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [13] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究.  , 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [14] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [15] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究.  , 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [16] 谭振兵, 马丽, 刘广同, 吕力, 杨昌黎. 石墨烯量子霍尔平台与平台之间转变的标度律关系.  , 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
    [17] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [18] 陈东猛. 在不同应力下石墨烯中拉曼谱的G峰劈裂的变化.  , 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [19] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究.  , 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [20] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性.  , 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
计量
  • 文章访问数:  6795
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-05-08
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map