Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimizing quantum state transfer in multi-excitation spin chains via information flux

Chen Jun Yu Ya-Fei Zhang Zhi-Ming

Citation:

Optimizing quantum state transfer in multi-excitation spin chains via information flux

Chen Jun, Yu Ya-Fei, Zhang Zhi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transfer of quantum states between distant nodes is one of the most fundamental tasks in quantum-information processing. Recent studies show that the antiferromagnetic spin chain initially prepared in a multi-excitation state can provide suitable pathways for quantum state transfer. In this paper, we investigate the quality of state transfer through a uniformly coupled antiferromagnetic spin chain where the initial state of the channel varies with the number of spin excitations. Firstly, by analyzing the dynamics of observables for the output qubit using the information-flux approach, the explicit relation about how the average fidelity of state transfer depends on the initial state of the spin channel is obtained. The results show that the average fidelity of state transfer through a multi-excitation spin channel only relates to the parity of the number of spin excitations in the channel. Then we compare the maximum average fidelity of state transfer through the odd-excitation with those through the even-excitation spin channels, and provide a simple criterion to optimize the quality of state transfer by choosing appropriate channels from the odd-excitation and the even-excitation channels. Compared with the previous studies which initialize the chains into the ground state of the ferromagnetic medium or the Nel state, the maximum average fidelity of state transfer is evidently enhanced by using the optimized channel. Moreover, we analyze the entanglement distribution through the channel having different number of spin excitations via the information-flux approach. It is found that the quality of entanglement distribution not only relates to the number of initial spin excitations present in the channel, but also depends on the initial ordering of these excited spins. The numerical results suggest that the amount of distributed entanglement and duration of distribution in the channel where all spins are down or up are larger than those in other excited channels. Based on these results, we can choose appropriate quantum channels for state transfer and entanglement distribution in practice.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the the National Basic Research Program of China (Grant Nos. 2011CBA00200, 2013CB921804), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Bose S 2003 Phys. Rev. Lett. 91 207901

    [2]

    Christandl M, Datta N, Ekert A, Landahl A J 2004 Phys. Rev. Lett. 92 187902

    [3]

    Albanese C, Christandl M, Datta N, Ekert A 2004 Phys. Rev. Lett. 93 230502

    [4]

    Shi T, Li Y, Song Z, Sun C P 2005 Phys. Rev. A 71 032309

    [5]

    Nikolopoulos G M, Petrosyan D, Lambropoulos P

    [6]

    Franco C D, Paternostro M, Kim M S 2008 Phys. Rev. Lett. 101 230502

    [7]

    Markiewicz M, Wiesniak M 2009 Phys. Rev. A 79 054304

    [8]

    Maruyama K, Iitaka T, Nori F 2007 Phys. Rev. A 75 012325

    [9]

    Zhang J, Shao B, Liu B Q 2011 Phys. Rev. A 84 012327

    [10]

    Wang Z M, Shao B, Chang P, Zou J 2007 J. Phys. A 40 9067

    [11]

    Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307

    [12]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2010 Phys. Rev. A 82 052321

    [13]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2011 New J. Phys. 13 123006

    [14]

    Apollaro T J G, Banchi L, Cuccoli A, Vaia R, Verrucchi P 2012 Phys. Rev. A 85 052319

    [15]

    Zeng T H, Shao B, Zou J 2009 Chin. Phys. Lett. 26 020313

    [16]

    Cai J M, Zhou Z W, Guo G C 2006 Phys. Rev. A 74 022328

    [17]

    Qin W, Li J L, Long G L 2015 Chin. Phys. B 24 040305

    [18]

    He Z, Yao C M, Zou J 2013 Phys. Rev. A 88 044304

    [19]

    Bayat A, Banchi L, Bose S, Verrucchi P 2011 Phys. Rev. A 83 062328

    [20]

    Liu Y, Zhou D L 2014 Phys. Rev. A 89 062331

    [21]

    Li J, Wu S H, Zhang W W, Xi X Q 2011 Chin. Phys. B 20 100308

    [22]

    Wu S H, Hu M L, Li J, Xi X Q 2011 Acta Phys. Sin. 60 010302 (in Chinese) [吴世海, 胡明亮, 李季, 惠小强 2011 60 010302]

    [23]

    Zhang Y Q, Xu J B 2012 Chin. Phys. B 21 010304

    [24]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [25]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M

    [26]

    Wang Z M, Ma R S, C Allen Bishop, Gu Y J 2012 Phys. Rev. A 86 022330

    [27]

    Bayat A, Bose S 2010 Adv. Math. Phys. 2010 127182

    [28]

    Franco C D, Paternostro M, Palma G M, Kim M S 2007 Phys. Rev. A 76 042316

    [29]

    Franco C D, Paternostro M, Kim M S 2010 Phys. Rev. A 81 022319

    [30]

    Apollaro T J G, Cuccoli A, Franco C D, Paternostro M, Plastina F, Verrucchi P 2010 New J. Phys. 12 083046

    [31]

    Horodecki M, Horodecki P, Horodecki R 1999 Phys. Rev. A 60 1888

    [32]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [33]

    Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 63 110305]

    [34]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [35]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [36]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [37]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schau P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

    [38]

    Zhao X, Zhao X D, Jing H 2013 Acta Phys. Sin. 62 060302 (in Chinese) [赵旭, 赵兴东, 景辉 2013 62 060302]

  • [1]

    Bose S 2003 Phys. Rev. Lett. 91 207901

    [2]

    Christandl M, Datta N, Ekert A, Landahl A J 2004 Phys. Rev. Lett. 92 187902

    [3]

    Albanese C, Christandl M, Datta N, Ekert A 2004 Phys. Rev. Lett. 93 230502

    [4]

    Shi T, Li Y, Song Z, Sun C P 2005 Phys. Rev. A 71 032309

    [5]

    Nikolopoulos G M, Petrosyan D, Lambropoulos P

    [6]

    Franco C D, Paternostro M, Kim M S 2008 Phys. Rev. Lett. 101 230502

    [7]

    Markiewicz M, Wiesniak M 2009 Phys. Rev. A 79 054304

    [8]

    Maruyama K, Iitaka T, Nori F 2007 Phys. Rev. A 75 012325

    [9]

    Zhang J, Shao B, Liu B Q 2011 Phys. Rev. A 84 012327

    [10]

    Wang Z M, Shao B, Chang P, Zou J 2007 J. Phys. A 40 9067

    [11]

    Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307

    [12]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2010 Phys. Rev. A 82 052321

    [13]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2011 New J. Phys. 13 123006

    [14]

    Apollaro T J G, Banchi L, Cuccoli A, Vaia R, Verrucchi P 2012 Phys. Rev. A 85 052319

    [15]

    Zeng T H, Shao B, Zou J 2009 Chin. Phys. Lett. 26 020313

    [16]

    Cai J M, Zhou Z W, Guo G C 2006 Phys. Rev. A 74 022328

    [17]

    Qin W, Li J L, Long G L 2015 Chin. Phys. B 24 040305

    [18]

    He Z, Yao C M, Zou J 2013 Phys. Rev. A 88 044304

    [19]

    Bayat A, Banchi L, Bose S, Verrucchi P 2011 Phys. Rev. A 83 062328

    [20]

    Liu Y, Zhou D L 2014 Phys. Rev. A 89 062331

    [21]

    Li J, Wu S H, Zhang W W, Xi X Q 2011 Chin. Phys. B 20 100308

    [22]

    Wu S H, Hu M L, Li J, Xi X Q 2011 Acta Phys. Sin. 60 010302 (in Chinese) [吴世海, 胡明亮, 李季, 惠小强 2011 60 010302]

    [23]

    Zhang Y Q, Xu J B 2012 Chin. Phys. B 21 010304

    [24]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [25]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M

    [26]

    Wang Z M, Ma R S, C Allen Bishop, Gu Y J 2012 Phys. Rev. A 86 022330

    [27]

    Bayat A, Bose S 2010 Adv. Math. Phys. 2010 127182

    [28]

    Franco C D, Paternostro M, Palma G M, Kim M S 2007 Phys. Rev. A 76 042316

    [29]

    Franco C D, Paternostro M, Kim M S 2010 Phys. Rev. A 81 022319

    [30]

    Apollaro T J G, Cuccoli A, Franco C D, Paternostro M, Plastina F, Verrucchi P 2010 New J. Phys. 12 083046

    [31]

    Horodecki M, Horodecki P, Horodecki R 1999 Phys. Rev. A 60 1888

    [32]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [33]

    Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 63 110305]

    [34]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [35]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [36]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [37]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schau P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

    [38]

    Zhao X, Zhao X D, Jing H 2013 Acta Phys. Sin. 62 060302 (in Chinese) [赵旭, 赵兴东, 景辉 2013 62 060302]

  • [1] Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides. Acta Physica Sinica, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [2] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [3] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [4] Lai Hong. Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states. Acta Physica Sinica, 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [5] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [6] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [7] Lin Zhi-Yuan, Shen Wei, Su Shan-He, Chen Jin-Can. The entropy production rate of double quantum-dot system with Coulomb coupling. Acta Physica Sinica, 2020, 69(13): 130501. doi: 10.7498/aps.69.20191879
    [8] Tian Cong, Lu Xiang, Zhang Ying-Jie, Xia Yun-Jie. Control of maximum evolution speed of quantum states by two-mode entangled light field. Acta Physica Sinica, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [9] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [10] Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang. Quantum entanglement concentration for photonic polarization state assisted by electron spin. Acta Physica Sinica, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [11] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [12] Xing Xiu-San. On dynamic information theory. Acta Physica Sinica, 2014, 63(23): 230201. doi: 10.7498/aps.63.230201
    [13] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [14] Xue Le, Nie Min, Liu Xiao-Hui. A model of quantum signaling repeater and its parameters simulation. Acta Physica Sinica, 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [15] Liu Xiao-Juan, Zhou Bing-Ju, Liu Yi-Man, Jiang Chun-Lei. Manipulation of entanglement and preparation of quantum states for moving two-atom and the light field via intensity-dependent coupling. Acta Physica Sinica, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [16] Yin Juan, Yong Hai-Lin, Wu Yu-Ping, Peng Cheng-Zhi. Experimental simulation of quantum entanglement distribution over a high-loss channel. Acta Physica Sinica, 2011, 60(6): 060307. doi: 10.7498/aps.60.060307
    [17] Wu Shi-Hai, Hu Ming-Liang, Li Ji, Xi Xiao-Qiang. Using Josephson charge qubits system to realize the transfer of a special kind of quantum state. Acta Physica Sinica, 2011, 60(1): 010302. doi: 10.7498/aps.60.010302
    [18] Hu Ming-Liang, Xi Xiao-Qiang. A new method of calculating the unitary evolution matrix ds(t) of the spin-s operators and its applications. Acta Physica Sinica, 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [19] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [20] Liu Tang-Kun, Wang Ji-Suo, Liu Xiao-Jun, Zhan Ming-Sheng. . Acta Physica Sinica, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
Metrics
  • Abstract views:  6361
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2015
  • Accepted Date:  12 May 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map