-
为了满足信息技术时代下海量数据的高效存储及处理, 具有低功耗、非易失性的自旋电子器件受到极大关注. 能够高效产生自旋流的自旋源材料是新型自旋-轨道力矩器件的重要组成部分. 近二十年来, 在探索具有高效产生自旋流的材料体系, 以及理解材料相关物理机制两方面都取得了较大的进展. 最近, 在过渡金属氧化物中涌现出许多与产生自旋流密切相关的新奇量子态, 成为自旋源的新兴材料体系被广泛研究. 研究结果表明, 过渡金属氧化物具有对电子结构高度敏感、显著且灵活可调的电荷-自旋转换效率, 具有巨大的应用潜力. 本文主要综述了过渡金属氧化物中新奇的电子能带结构及其与电荷-自旋互转换的关联机制, 并对未来的发展趋势进行了展望.For efficient storage and processing of massive data in the information technology era, spintronic device attracts tremendous attention due to its low power consumption and non-volatile feature. Spin source material, which can efficiently generates spin current, is an important constituent of novel spin-orbit torque device. The efficiency of spin current generation in spin source material directly determines the performances of various spintronic devices. In the past two decades, great progress has been made in exploring high-efficient spin source material systems and understanding the relevant physical mechanisms. A wide variety of materials are explored, ranging from traditional heavy metals and semiconductors to topological insulators and two-dimensional (2D) materials. Recently, the material family of transition metal oxides attracts tremendous attention due to its efficient and highly tunable charge-spin conversion intimately related to its emerging novel quantum states and electronic structure. The mechanism of charge-spin conversion generally has two contributions: the bulk spin Hall effect and the spin-momentum locked interface with inversion symmetry breaking. Novel electronic structures such as topological band structures and spin-momentum locked surface states can realize efficient charge-spin conversion. For example, the Weyl points in SrRuO3 and the topological Dirac nodal line in SrIrO3 are predicted to give rise to a large Berry curvature and corresponding spin Hall conductance; the topological surface states can generate spin accumulation due to spin-momentum locking; the Rashba states at the oxide interface such as the 2D electron gas in SrTiO3 and KTaO3 can generate spin current by Rashba-Edelstein effect. Furthermore, the entanglement of various degrees of freedom, including spin, charge, lattice and orbit in transition metal oxides lead to the electronic structure being highly tunable by various methods including gate voltage, substrate constraint, thickness, interface engineering, etc. Therefore, charge-spin conversion in transition metal oxides is of great significance for both modulating of novel electronic structure in fundamental research and exploring its promising potential in future spintronic devices. In this review, we focus on introducing aspects of exotic electronic structures, spin transport mechanism, charge-spin interconversion characterization, efficiency and manipulation in transition metal oxides, and giving a prospect on the future development trend.
-
Keywords:
- transition metal oxide /
- electronic structure /
- charge-spin interconversion /
- spin-orbit torque
[1] Agarwal S, Aimone B, Akinaga H, Akinola O, Badaroglu M, Bersuker G, Binek C 2021 International Roadmap For Devices And Systems (2021 Edition) https://irds.ieee.org/editions/2021
[2] Manipatruni S, Nikonov D E, Young I A 2018 Nat. Phys. 14 338
Google Scholar
[3] Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Onbaşlı M C, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446
Google Scholar
[4] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 800439
Google Scholar
[5] Chen H, Yi D 2021 APL Mater. 9 060908
Google Scholar
[6] Trier F, Noël P, Kim J V, Attané J P, Vila L, Bibes M 2021 Nat. Rev. Mater. 7 258
Google Scholar
[7] Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57
Google Scholar
[8] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001
Google Scholar
[9] Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
Google Scholar
[10] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[11] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[12] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[13] Itoh S, Endoh Y, Yokoo T, Ibuka S, Park J G, Kaneko Y, Takahashi K S, Tokura Y, Nagaosa N 2016 Nat. Commun. 7 11788
Google Scholar
[14] Jadaun P, Register L F, Banerjee S K 2020 Proc. Natl. Acad. Sci. U.S.A. 117 11878
Google Scholar
[15] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004
Google Scholar
[16] Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806
Google Scholar
[17] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Jarillo-Herrero P 2019 Nature 565 337
Google Scholar
[18] He P, Zhang S S, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495
Google Scholar
[19] He P, Zhang S S, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801
Google Scholar
[20] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
Google Scholar
[21] Berger L 1996 Phys. Rev. B 54 9353
Google Scholar
[22] Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601
Google Scholar
[23] Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149
Google Scholar
[24] Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012
Google Scholar
[25] Yoon J, Lee S W, Kwon J H, Lee J M, Son J, Qiu X, Lee K J, Yang H 2017 Sci. Adv. 3 e1603099
Google Scholar
[26] Liu Y T, Huang C C, Chen K H, Huang Y H, Tsai C C, Chang T Y, Pai C F 2021 Phys. Rev. Appl. 16 024021
Google Scholar
[27] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
Google Scholar
[28] Pai Y Y, Tylan-Tyler A, Irvin P, Levy J 2018 Rep. Prog. Phys. 81 036503
Google Scholar
[29] Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156
Google Scholar
[30] Ohtomo A, Hwang H Y 2004 Nature 427 423
Google Scholar
[31] Stemmer S, James Allen S 2014 Annu. Rev. Mater. Sci. 44 151
Google Scholar
[32] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
Google Scholar
[33] Trier F, Prawiroatmodjo G E, Zhong Z, Christensen D V, von Soosten M, Bhowmik A, Lastra J M, Chen Y, Jespersen T S, Pryds N 2016 Phys. Rev. Lett. 117 096804
Google Scholar
[34] Vaz D C, Noel P, Johansson A, Gobel B, Bruno F Y, Singh G, McKeown-Walker S, Trier F, Vicente-Arche L M, Sander A, Valencia S, Bruneel P, Vivek M, Gabay M, Bergeal N, Baumberger F, Okuno H, Barthelemy A, Fert A, Vila L, Mertig I, Attane J P, Bibes M 2019 Nat. Mater. 18 1187
Google Scholar
[35] King P D, McKeown Walker S, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S K, Meevasana W, Bahramy M S, Baumberger F 2014 Nat. Commun. 5 3414
Google Scholar
[36] Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y 2010 Phys. Rev. Lett. 104 126802
Google Scholar
[37] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone J M 2010 Phys. Rev. Lett. 104 126803
Google Scholar
[38] Lesne E, Fu Y, Oyarzun S, Rojas-Sanchez J C, Vaz D C, Naganuma H, Sicoli G, Attane J P, Jamet M, Jacquet E, George J M, Barthelemy A, Jaffres H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261
Google Scholar
[39] Kaneta-Takada S, Kitamura M, Arai S, Arai T, Okano R, Anh L D, Endo T, Horiba K, Kumigashira H, Kobayashi M, Seki M, Tabata H, Tanaka M, Ohya S 2022 Nat. Commun. 13 5631
Google Scholar
[40] Noel P, Trier F, Vicente Arche L M, Brehin J, Vaz D C, Garcia V, Fusil S, Barthelemy A, Vila L, Bibes M, Attane J P 2020 Nature 580 483
Google Scholar
[41] Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T, Yang H 2017 Nano Lett. 17 7659
Google Scholar
[42] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603
Google Scholar
[43] Jin M J, Moon S Y, Park J, Modepalli V, Jo J, Kim S I, Koo H C, Min B C, Lee H W, Baek S H, Yoo J W 2017 Nano Lett. 17 36
Google Scholar
[44] Trier F, Vaz D C, Bruneel P, Noel P, Fert A, Vila L, Attane J P, Barthelemy A, Gabay M, Jaffres H, Bibes M 2020 Nano Lett. 20 395
Google Scholar
[45] Grigera S A, Gegenwart P, Borzi R A, Weickert F, Schofield A J, Perry R S, Tayama T, Sakakibara T, Maeno Y, Green A G, Mackenzie A P 2004 Science 306 1154
Google Scholar
[46] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H, Sigrist M 1998 Nature 394 558
Google Scholar
[47] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, Beasley M R 2012 Rev. Mod. Phys. 84 253
Google Scholar
[48] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92
Google Scholar
[49] Mathieu R, Asamitsu A, Yamada H, Takahashi K S, Kawasaki M, Fang Z, Nagaosa N, Tokura Y 2004 Phys. Rev. Lett. 93 016602
Google Scholar
[50] Chen Y, Bergman D L, Burkov A A 2013 Phys. Rev. B 88 125110
Google Scholar
[51] Takiguchi K, Wakabayashi Y K, Irie H, Krockenberger Y, Otsuka T, Sawada H, Nikolaev S A, Das H, Tanaka M, Taniyasu Y, Yamamoto H 2020 Nat. Commun. 11 4969
Google Scholar
[52] Lin W, Liu L, Liu Q, Li L, Shu X, Li C, Xie Q, Jiang P, Zheng X, Guo R, Lim Z, Zeng S, Zhou G, Wang H, Zhou J, Yang P, Ariando, Pennycook S J, Xu X, Zhong Z, Wang Z, Chen J 2021 Adv. Mater. 33 2101316
Google Scholar
[53] Tian D, Liu Z, Shen S, Li Z, Zhou Y, Liu H, Chen H, Yu P 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2101946118
Google Scholar
[54] Haidar S M, Shiomi Y, Lustikova J, Saitoh E 2015 Appl. Phys. Lett. 107 152408
Google Scholar
[55] Richter T, Paleschke M, Wahler M, Heyroth F, Deniz H, Hesse D, Schmidt G 2017 Phys. Rev. B 96 184407
Google Scholar
[56] Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727
Google Scholar
[57] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601
Google Scholar
[58] Ou Y, Wang Z, Chang C S, Nair H P, Paik H, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663
Google Scholar
[59] Zhou J, Shu X, Lin W, Shao D F, Chen S, Liu L, Yang P, Tsymbal E Y, Chen J 2021 Adv. Mater. 33 2007114
Google Scholar
[60] Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G, Han X 2021 Adv. Funct. Mater. 31 2100380
Google Scholar
[61] Li S, Lao B, Lu Z, Zheng X, Zhao K, Gong L, Tang T, Wu K, Li R W, Wang Z 2023 Phys. Rev. Mater. 7 024418
Google Scholar
[62] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402
Google Scholar
[63] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C, Noh T W 2008 Phys. Rev. Lett. 101 226402
Google Scholar
[64] Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105
Google Scholar
[65] Kim H S, Chen Y, Kee H Y 2015 Phys. Rev. B 91 235103
Google Scholar
[66] Nie Y F, King P D, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P, Xie L, Pan X, Fennie C J, Schlom D G, Shen K M 2015 Phys. Rev. Lett. 114 016401
Google Scholar
[67] Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z, Shen D W 2016 Sci. Rep. 6 30309
Google Scholar
[68] Liu J, Kriegner D, Horak L, Puggioni D, Rayan Serrao C, Chen R, Yi D, Frontera C, Holy V, Vishwanath A, Rondinelli J M, Marti X, Ramesh R 2016 Phys. Rev. B 93 085118
Google Scholar
[69] Fujioka J, Yamada R, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y 2019 Nat. Commun. 10 362
Google Scholar
[70] Patri A S, Hwang K, Lee H W, Kim Y B 2018 Sci. Rep. 8 8052
Google Scholar
[71] Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593
Google Scholar
[72] Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801
Google Scholar
[73] Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski M S, Kim Y B, Ralph D C, Eom C B 2019 Proc. Natl. Acad. Sci. U.S.A. 116 16186
Google Scholar
[74] Everhardt A S, Dc M, Huang X, Sayed S, Gosavi T A, Tang Y, Lin C C, Manipatruni S, Young I A, Datta S, Wang J P, Ramesh R 2019 Phys. Rev. Mater. 3 051201
Google Scholar
[75] Liu L, Qin Q, Lin W, Li C, Xie Q, He S, Shu X, Zhou C, Lim Z, Yu J, Lu W, Li M, Yan X, Pennycook S J, Chen J 2019 Nat. Nanotechnol. 14 939
Google Scholar
[76] Wang H, Meng K Y, Zhang P, Hou J T, Finley J, Han J, Yang F, Liu L 2019 Appl. Phys. Lett. 114 232406
Google Scholar
[77] Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica V A, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph D C, Ramesh R 2021 Adv. Mater. 33 e2008269
Google Scholar
[78] Liu L, Zhou G, Shu X, Li C, Lin W, Ren L, Zhou C, Zhao T, Guo R, Xie Q, Wang H, Zhou J, Yang P, Pennycook S J, Xu X, Chen J 2022 Phys. Rev. B 105 144419
Google Scholar
[79] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449
Google Scholar
[80] Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990
Google Scholar
[81] Amin V P, Stiles M D 2016 Phys. Rev. B 94 104420
Google Scholar
[82] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587
Google Scholar
[83] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
Google Scholar
[84] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404
Google Scholar
[85] Ren Z, Lao B, Zheng X, Liao L, Lu Z, Li S, Yang Y, Cao B, Wen L, Zhao K, Wang L, Bai X, Hao X, Liao Z, Wang Z, Li R W 2022 ACS Appl. Mater. Interfaces 14 15407
Google Scholar
[86] Nakamura H, Kimura T 2009 Phys. Rev. B 80 121308
Google Scholar
[87] King P D, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F, Meevasana W 2012 Phys. Rev. Lett. 108 117602
Google Scholar
[88] Santander-Syro A F, Bareille C, Fortuna F, Copie O, Gabay M, Bertran F, Taleb-Ibrahimi A, Le Fèvre P, Herranz G, Reyren N, Bibes M, Barthélémy A, Lecoeur P, Guevara J, Rozenberg M J 2012 Phys. Rev. B 86 121107
Google Scholar
[89] Bruno F Y, McKeown Walker S, Riccò S, la Torre A, Wang Z, Tamai A, Kim T K, Hoesch M, Bahramy M S, Baumberger F 2019 Adv. Electron. Mater. 5 1800860
Google Scholar
[90] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716
Google Scholar
[91] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721
Google Scholar
[92] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104
Google Scholar
[93] Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B, Sun J 2017 ACS Appl. Mater. Interfaces 9 36456
Google Scholar
[94] Zhang H, Yan X, Zhang X, Wang S, Xiong C, Zhang H, Qi S, Zhang J, Han F, Wu N, Liu B, Chen Y, Shen B, Sun J 2019 ACS Nano 13 609
Google Scholar
[95] Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W, Sun J 2018 Phys. Rev. Lett. 121 116803
Google Scholar
[96] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874
Google Scholar
[97] Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y, Hu F, Cai J, Shen B, Han W, Sun J 2019 Nano Lett. 19 1605
Google Scholar
[98] Vicente-Arche L M, Brehin J, Varotto S, Cosset-Cheneau M, Mallik S, Salazar R, Noel P, Vaz D C, Trier F, Bhattacharya S, Sander A, Le Fevre P, Bertran F, Saiz G, Menard G, Bergeal N, Barthelemy A, Li H, Lin C C, Nikonov D E, Young I A, Rault J E, Vila L, Attane J P, Bibes M 2021 Adv. Mater. 33 e2102102
Google Scholar
[99] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103
Google Scholar
[100] Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257
Google Scholar
[101] Zheng Z, Zhang Y, Lopez-Dominguez V, Sanchez-Tejerina L, Shi J, Feng X, Chen L, Wang Z, Zhang Z, Zhang K, Hong B, Xu Y, Zhang Y, Carpentieri M, Fert A, Finocchio G, Zhao W, Khalili Amiri P 2021 Nat. Commun. 12 4555
Google Scholar
[102] Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878
Google Scholar
[103] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548
Google Scholar
[104] He P, Walker S M, Zhang S S, Bruno F Y, Bahramy M S, Lee J M, Ramaswamy R, Cai K, Heinonen O, Vignale G, Baumberger F, Yang H 2018 Phys. Rev. Lett. 120 266802
Google Scholar
[105] Lee J H, Harada T, Trier F, Marcano L, Godel F, Valencia S, Tsukazaki A, Bibes M 2021 Nano Lett. 21 8687
Google Scholar
[106] Gonzalez-Hernandez R, Smejkal L, Vyborny K, Yahagi Y, Sinova J, Jungwirth T, Zelezny J 2021 Phys. Rev. Lett. 126 127701
Google Scholar
[107] Bose A, Schreiber N J, Jain R, Shao D F, Nair H P, Sun J, Zhang X S, Muller D A, Tsymbal E Y, Schlom D G, Ralph D C 2022 Nat. Electron. 5 267
Google Scholar
[108] Bai H, Han L, Feng X Y, Zhou Y J, Su R X, Wang Q, Liao L Y, Zhu W X, Chen X Z, Pan F, Fan X L, Song C 2022 Phys. Rev. Lett. 128 197202
Google Scholar
[109] Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 024428
Google Scholar
[110] Gomonay O, Jungwirth T, Sinova J 2016 Phys. Rev. Lett. 117 017202
Google Scholar
[111] Zhu D, Zhao W 2020 Phys. Rev. Appl. 13 044078
Google Scholar
[112] Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204
Google Scholar
[113] Dyrdal A, Barnas J, Fert A 2020 Phys. Rev. Lett. 124 046802
Google Scholar
[114] Yu X Q, Zhu Z G, Su G 2021 Phys. Rev. B 103 035410
Google Scholar
[115] Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Eda G, Liang G, Yang H 2021 Nat. Nanotechnol. 16 421
Google Scholar
[116] Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415
Google Scholar
[117] Lao B, Liu P, Zheng X, Lu Z, Li S, Zhao K, Gong L, Tang T, Wu K, Shi YG, Sun Y, Chen X Q, Li R W, Wang Z 2022 Phys. Rev. B 106 L220409
Google Scholar
-
图 2 SrTiO3表面2DEG的电子结构及自旋-电荷互转换相关表征结果 (a) SrTiO3表面2DEG费米面的ARPES结果, 与计算结果相吻合(出自文献[34], 已获得授权); (b)基于8能带紧束缚模型计算得到费米面处的自旋分布(左图)及能带交叉处的放大图(右图) (出自文献[34], 已获得授权); (c)计算得到的能带结构展示了能带混合以及Rashba劈裂, 且在能带交叉处有更大的Rashba劈裂 (出自文献[35], 已获得授权); (d) SrTiO3/Al 2DEG的电荷-自旋转换效率λIEE随调控电压Vg的变化 (出自文献[34], 已获得授权); (e) SrTiO3/LaAlO3/CoFeB中温度依赖的电荷-自旋转换效率 (出自文献[41], 已获得授权); (f)通过非局域效应测量2DEG中的自旋霍尔效应和逆自旋霍尔效应, 电压调控的Hanle效应可以通过施加外磁场观测 (出自文献[44], 已获得授权)
Fig. 2. Electronic structure and charge-spin interconversion in the 2DEG at the surface of SrTiO3: (a) The Fermi surface of the 2DEG at the surface of SrTiO3 from APRES measurement, which coincides with the calculated band structure (Reproduced with permission from Ref. [34]); (b) the spin textures of the Fermi surface calculated by the eight-band tight-binding model (left). The figure on the right is the zoom-in near the band crossing area (Reproduced with permission from Ref. [34]); (c) the calculated band structure exhibits band mixing and Rashba splitting, where the Rashba splitting is enhanced at the band crossing (Reproduced with permission from Ref. [35]); (d) charge-spin conversion efficiency λIEE of SrTiO3/Al 2DEG as a function of gate voltage Vg (Reproduced with permission from Ref. [34]); (e) the temperature dependent charge-spin conversion efficiency of SrTiO3/LaAlO3/CoFeB (Reproduced with permission from Ref. [41]); (f) the nonlocal measurement of the spin Hall effect and inverse spin Hall effect. The Hanle effect tuned by gating voltage is observed when applying magnetic field (Reproduced with permission from Ref. [44]).
图 3 SrRuO3的电子结构、自旋输运及SOT相关表征结果 (a) 基于GGA计算的SrRuO3能带结构, 考虑了磁性、SOC及库仑相互作用的影响[51]; (b) SrRuO3(001)电子结构在费米面附近的能量-动量映射图, 左图为ARPES测量结果, 右图为DFT计算结果(出自文献[52], 已获得授权); (c) 正交相SrRuO3费米面附近贝里曲率分布的计算结果 (出自文献[52], 已获得授权); (d) 300—60 K范围内SrRuO3自旋霍尔电导率随温度的变化(插图: 相同温度区间内对应的电导率变化) (出自文献[58], 已获得授权); (e) 不同衬底上SrRuO3电荷-自旋转换效率随温度的变化 (出自文献[59], 已获得授权); (f) 不同衬底上的正交相(红色方块)和四方相(蓝色菱形) SrRuO3的电荷-自旋转换效率 (出自文献[60], 已获得授权)
Fig. 3. Electronic structures, spin transport properties and SOT associated characterization results of SrRuO3: (a) Band structure of SrRuO3 from GGA calculations taking into account the effects of magnetization, SOC and Coulomb interaction[51]; (b) comparison of energy momentum mappings near the Fermi surface measured by ARPES (left) and calculated by DFT (right) for SrRuO3(001) (Reproduced with permission from Ref. [52]); (c) calculated Berry curvature distributions near the Fermi surface in orthorhombic SrRuO3 (Reproduced with permission from Ref. [52]); (d) spin Hall conductivity of SrRuO3 as a function of temperature ranging from 300 to 60 K (inset: the corresponding electrical conductivity in the same temperature range) (Reproduced with permission from Ref. [58]); (e) charge-spin conversion efficiency of SrRuO3 grown on various substrates as a function of temeprature (Reproduced with permission from Ref. [59]); (f) comparison of charge-spin conversion efficiency between orthorhombic (red square) and tetragonal (blue diamond) SrRuO3 grown on various substrates (Reproduced with permission from Ref. [60]).
图 4 SrIrO3的电子结构、自旋输运及SOT相关表征结果 (a) 上: SrIrO3(001)费米面附近电子结构的ARPES测量结果; 左下: 费米面附近的空穴型能带; 右下: 费米面附近的线性色散电子型能带 (出自文献[66], 已获得授权); (b) SrIrO3(001)能带结构的ARPES测量和DFT计算的比较[67]; (c) SrIrO3体相的自旋霍尔电导σ, 图中x, y, z代表SrIrO3的伪立方结构的高对称轴[70]; (d) SrIrO3费米面上的自旋构型, 这种非平庸的自旋构型来源于SOC, 并能提供自旋-动量锁定 (出自文献[72], 已获得授权); (e) 正交相和四方相SrIrO3(001)的电荷-自旋转换效率, 上、下方插图分别为正交、四方相晶体结构的侧视图 (出自文献[73], 已获得授权); (f) 50—300 K范围内SrIrO3(001)/CoTb电荷-自旋转换效率随温度的变化 (出自文献[76], 已获得授权); (g) SrIrO3/La0.7Sr0.3MnO3和SrIrO3/Py电荷-自旋转换效率与SrIrO3厚度的关联性(出自文献[77], 已获得授权)
Fig. 4. Electronic structures, spin transport properties and SOT associated characterization results of SrIrO3. (a) Upper: The electronic structure map near the Fermi surface measured by ARPES; bottom-left: the holelike bands near the Fermi surface; bottom-right: the linearly dispersive electron band near the Fermi surface (Reproduced with permission from Ref. [66]); (b) comparison of the ARPES measurements and DFT calculations in band strucutre of SrIrO3 (001)[67]; (c) spin Hall conductivity σ in the SrIrO3 bulk, here x, y, and z represent the high-symmetry axes of the pseudo-cubic structure of SrIrO3[70]; (d) spin textures at SrIrO3 Fermi surface, this nontrivial spin textures are originated from the SOC and offers the spin-momentum locking (Reproduced with permission from Ref. [72]); (e) charge-spin conversion efficiency of SrIrO3(001)/Py with orthorhombic and tetragonal structures, the top and bottom schematics illustrate side view of the orthorhombic and tetragonal crystalline structures, respectivity (Reproduced with permission from Ref. [73]); (f) temperature dependence of charge-spin conversion efficiency of SrIrO3(001)/CoTb ranging from 50 to 300 K (Reproduced with permission from Ref. [76]); (g) charge-spin conversion efficiency as a function of SrIrO3 thickness for SrIrO3/ La0.7Sr0.3MnO3 (solid squares) and SrIrO3/Py (opened triangles) (Reproduced with permission from Ref. [77]).
图 5 KTaO3的电子结构、自旋输运及SOT相关表征结果 (a) KTaO3晶体结构和能带结构示意图, 由t2g轨道构成的导带在SOC作用下劈裂成HE, LE和SO三个子带(出自文献[86], 已获得授权); (b) KTaO3(001)表面2DEG的ARPES结果, 测量的能带结构示意图由红线表示(出自文献[87], 已获得授权); (c) KTaO3(111)表面2DEG的ARPES结果, 左侧为费米面的测量(上)和计算(下)结果, 星型-六角形费米面由dxy, dxz, dyz轨道构成; 右侧为两个高对称方向的费米面测量结果侧视图(出自文献[89], 已获得授权); (d) KTaO3/EuO界面的热自旋注入与inverse Edelstein效应示意图(上), 及测量的逆 Edelstein电流与EuO厚度的关联性(下) (出自文献[97], 已获得授权); (e) 通过逆 Rashba-Edelstein效应产生的电荷流与所施加dc磁场的关联性, 插图为SP-FMR测量的配置图(出自文献[98], 已获得授权); (f) 双线性磁电阻与电流(左)和磁场(右)的关系(出自文献[98], 已获得授权)
Fig. 5. Electronic structures, spin transport properties and SOT associated characterization results of KTaO3: (a) Schematic crystalline structure and band structure of KTaO3, the conducting t2g band consists of complicated HE, LE and SO subbands due to SOC (Reproduced with permission from Ref. [86]); (b) ARPES results of surface 2DEG in KTaO3(001), the red curves presents schematics of the measured band structure (Reproduced with permission from Ref. [87]); (c) ARPES results of surface 2DEG in KTaO3(111); leftside: measured (upper) and calculated (bottom) starlike-hexagonal Fermi surface of the 2DEG, which consists of dxy, dxz and dyz orbits; rightside: sideviews of the measured Fermi surface along high symmetry directions (Reproduced with permission from Ref. [89]); (d) schematic for thermal spin injection and inverse Edelstein effect (upper) and EuO thickness dependent inverse Edelstein current (bottom) of the KTaO3/EuO interface (Reproduced with permission from Ref. [97]); (e) the transverse charge current generated through the inverse Rashba-Edelstein effect as a function of applied dc magnetici field, the inset schematic presents the SP-FMR measurement configuration (Reproduced with permission from Ref. [98]); (f) bilinear magnetoresistence as functions of applied charge current (left) and magnetici field (right) (Reproduced with permission from Ref. [98]).
-
[1] Agarwal S, Aimone B, Akinaga H, Akinola O, Badaroglu M, Bersuker G, Binek C 2021 International Roadmap For Devices And Systems (2021 Edition) https://irds.ieee.org/editions/2021
[2] Manipatruni S, Nikonov D E, Young I A 2018 Nat. Phys. 14 338
Google Scholar
[3] Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Onbaşlı M C, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446
Google Scholar
[4] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 800439
Google Scholar
[5] Chen H, Yi D 2021 APL Mater. 9 060908
Google Scholar
[6] Trier F, Noël P, Kim J V, Attané J P, Vila L, Bibes M 2021 Nat. Rev. Mater. 7 258
Google Scholar
[7] Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57
Google Scholar
[8] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001
Google Scholar
[9] Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
Google Scholar
[10] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[11] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[12] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[13] Itoh S, Endoh Y, Yokoo T, Ibuka S, Park J G, Kaneko Y, Takahashi K S, Tokura Y, Nagaosa N 2016 Nat. Commun. 7 11788
Google Scholar
[14] Jadaun P, Register L F, Banerjee S K 2020 Proc. Natl. Acad. Sci. U.S.A. 117 11878
Google Scholar
[15] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004
Google Scholar
[16] Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806
Google Scholar
[17] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Jarillo-Herrero P 2019 Nature 565 337
Google Scholar
[18] He P, Zhang S S, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495
Google Scholar
[19] He P, Zhang S S, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801
Google Scholar
[20] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
Google Scholar
[21] Berger L 1996 Phys. Rev. B 54 9353
Google Scholar
[22] Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601
Google Scholar
[23] Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149
Google Scholar
[24] Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012
Google Scholar
[25] Yoon J, Lee S W, Kwon J H, Lee J M, Son J, Qiu X, Lee K J, Yang H 2017 Sci. Adv. 3 e1603099
Google Scholar
[26] Liu Y T, Huang C C, Chen K H, Huang Y H, Tsai C C, Chang T Y, Pai C F 2021 Phys. Rev. Appl. 16 024021
Google Scholar
[27] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
Google Scholar
[28] Pai Y Y, Tylan-Tyler A, Irvin P, Levy J 2018 Rep. Prog. Phys. 81 036503
Google Scholar
[29] Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156
Google Scholar
[30] Ohtomo A, Hwang H Y 2004 Nature 427 423
Google Scholar
[31] Stemmer S, James Allen S 2014 Annu. Rev. Mater. Sci. 44 151
Google Scholar
[32] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
Google Scholar
[33] Trier F, Prawiroatmodjo G E, Zhong Z, Christensen D V, von Soosten M, Bhowmik A, Lastra J M, Chen Y, Jespersen T S, Pryds N 2016 Phys. Rev. Lett. 117 096804
Google Scholar
[34] Vaz D C, Noel P, Johansson A, Gobel B, Bruno F Y, Singh G, McKeown-Walker S, Trier F, Vicente-Arche L M, Sander A, Valencia S, Bruneel P, Vivek M, Gabay M, Bergeal N, Baumberger F, Okuno H, Barthelemy A, Fert A, Vila L, Mertig I, Attane J P, Bibes M 2019 Nat. Mater. 18 1187
Google Scholar
[35] King P D, McKeown Walker S, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S K, Meevasana W, Bahramy M S, Baumberger F 2014 Nat. Commun. 5 3414
Google Scholar
[36] Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y 2010 Phys. Rev. Lett. 104 126802
Google Scholar
[37] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone J M 2010 Phys. Rev. Lett. 104 126803
Google Scholar
[38] Lesne E, Fu Y, Oyarzun S, Rojas-Sanchez J C, Vaz D C, Naganuma H, Sicoli G, Attane J P, Jamet M, Jacquet E, George J M, Barthelemy A, Jaffres H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261
Google Scholar
[39] Kaneta-Takada S, Kitamura M, Arai S, Arai T, Okano R, Anh L D, Endo T, Horiba K, Kumigashira H, Kobayashi M, Seki M, Tabata H, Tanaka M, Ohya S 2022 Nat. Commun. 13 5631
Google Scholar
[40] Noel P, Trier F, Vicente Arche L M, Brehin J, Vaz D C, Garcia V, Fusil S, Barthelemy A, Vila L, Bibes M, Attane J P 2020 Nature 580 483
Google Scholar
[41] Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T, Yang H 2017 Nano Lett. 17 7659
Google Scholar
[42] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603
Google Scholar
[43] Jin M J, Moon S Y, Park J, Modepalli V, Jo J, Kim S I, Koo H C, Min B C, Lee H W, Baek S H, Yoo J W 2017 Nano Lett. 17 36
Google Scholar
[44] Trier F, Vaz D C, Bruneel P, Noel P, Fert A, Vila L, Attane J P, Barthelemy A, Gabay M, Jaffres H, Bibes M 2020 Nano Lett. 20 395
Google Scholar
[45] Grigera S A, Gegenwart P, Borzi R A, Weickert F, Schofield A J, Perry R S, Tayama T, Sakakibara T, Maeno Y, Green A G, Mackenzie A P 2004 Science 306 1154
Google Scholar
[46] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H, Sigrist M 1998 Nature 394 558
Google Scholar
[47] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, Beasley M R 2012 Rev. Mod. Phys. 84 253
Google Scholar
[48] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92
Google Scholar
[49] Mathieu R, Asamitsu A, Yamada H, Takahashi K S, Kawasaki M, Fang Z, Nagaosa N, Tokura Y 2004 Phys. Rev. Lett. 93 016602
Google Scholar
[50] Chen Y, Bergman D L, Burkov A A 2013 Phys. Rev. B 88 125110
Google Scholar
[51] Takiguchi K, Wakabayashi Y K, Irie H, Krockenberger Y, Otsuka T, Sawada H, Nikolaev S A, Das H, Tanaka M, Taniyasu Y, Yamamoto H 2020 Nat. Commun. 11 4969
Google Scholar
[52] Lin W, Liu L, Liu Q, Li L, Shu X, Li C, Xie Q, Jiang P, Zheng X, Guo R, Lim Z, Zeng S, Zhou G, Wang H, Zhou J, Yang P, Ariando, Pennycook S J, Xu X, Zhong Z, Wang Z, Chen J 2021 Adv. Mater. 33 2101316
Google Scholar
[53] Tian D, Liu Z, Shen S, Li Z, Zhou Y, Liu H, Chen H, Yu P 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2101946118
Google Scholar
[54] Haidar S M, Shiomi Y, Lustikova J, Saitoh E 2015 Appl. Phys. Lett. 107 152408
Google Scholar
[55] Richter T, Paleschke M, Wahler M, Heyroth F, Deniz H, Hesse D, Schmidt G 2017 Phys. Rev. B 96 184407
Google Scholar
[56] Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727
Google Scholar
[57] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601
Google Scholar
[58] Ou Y, Wang Z, Chang C S, Nair H P, Paik H, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663
Google Scholar
[59] Zhou J, Shu X, Lin W, Shao D F, Chen S, Liu L, Yang P, Tsymbal E Y, Chen J 2021 Adv. Mater. 33 2007114
Google Scholar
[60] Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G, Han X 2021 Adv. Funct. Mater. 31 2100380
Google Scholar
[61] Li S, Lao B, Lu Z, Zheng X, Zhao K, Gong L, Tang T, Wu K, Li R W, Wang Z 2023 Phys. Rev. Mater. 7 024418
Google Scholar
[62] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402
Google Scholar
[63] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C, Noh T W 2008 Phys. Rev. Lett. 101 226402
Google Scholar
[64] Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105
Google Scholar
[65] Kim H S, Chen Y, Kee H Y 2015 Phys. Rev. B 91 235103
Google Scholar
[66] Nie Y F, King P D, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P, Xie L, Pan X, Fennie C J, Schlom D G, Shen K M 2015 Phys. Rev. Lett. 114 016401
Google Scholar
[67] Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z, Shen D W 2016 Sci. Rep. 6 30309
Google Scholar
[68] Liu J, Kriegner D, Horak L, Puggioni D, Rayan Serrao C, Chen R, Yi D, Frontera C, Holy V, Vishwanath A, Rondinelli J M, Marti X, Ramesh R 2016 Phys. Rev. B 93 085118
Google Scholar
[69] Fujioka J, Yamada R, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y 2019 Nat. Commun. 10 362
Google Scholar
[70] Patri A S, Hwang K, Lee H W, Kim Y B 2018 Sci. Rep. 8 8052
Google Scholar
[71] Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593
Google Scholar
[72] Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801
Google Scholar
[73] Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski M S, Kim Y B, Ralph D C, Eom C B 2019 Proc. Natl. Acad. Sci. U.S.A. 116 16186
Google Scholar
[74] Everhardt A S, Dc M, Huang X, Sayed S, Gosavi T A, Tang Y, Lin C C, Manipatruni S, Young I A, Datta S, Wang J P, Ramesh R 2019 Phys. Rev. Mater. 3 051201
Google Scholar
[75] Liu L, Qin Q, Lin W, Li C, Xie Q, He S, Shu X, Zhou C, Lim Z, Yu J, Lu W, Li M, Yan X, Pennycook S J, Chen J 2019 Nat. Nanotechnol. 14 939
Google Scholar
[76] Wang H, Meng K Y, Zhang P, Hou J T, Finley J, Han J, Yang F, Liu L 2019 Appl. Phys. Lett. 114 232406
Google Scholar
[77] Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica V A, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph D C, Ramesh R 2021 Adv. Mater. 33 e2008269
Google Scholar
[78] Liu L, Zhou G, Shu X, Li C, Lin W, Ren L, Zhou C, Zhao T, Guo R, Xie Q, Wang H, Zhou J, Yang P, Pennycook S J, Xu X, Chen J 2022 Phys. Rev. B 105 144419
Google Scholar
[79] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449
Google Scholar
[80] Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990
Google Scholar
[81] Amin V P, Stiles M D 2016 Phys. Rev. B 94 104420
Google Scholar
[82] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587
Google Scholar
[83] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
Google Scholar
[84] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404
Google Scholar
[85] Ren Z, Lao B, Zheng X, Liao L, Lu Z, Li S, Yang Y, Cao B, Wen L, Zhao K, Wang L, Bai X, Hao X, Liao Z, Wang Z, Li R W 2022 ACS Appl. Mater. Interfaces 14 15407
Google Scholar
[86] Nakamura H, Kimura T 2009 Phys. Rev. B 80 121308
Google Scholar
[87] King P D, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F, Meevasana W 2012 Phys. Rev. Lett. 108 117602
Google Scholar
[88] Santander-Syro A F, Bareille C, Fortuna F, Copie O, Gabay M, Bertran F, Taleb-Ibrahimi A, Le Fèvre P, Herranz G, Reyren N, Bibes M, Barthélémy A, Lecoeur P, Guevara J, Rozenberg M J 2012 Phys. Rev. B 86 121107
Google Scholar
[89] Bruno F Y, McKeown Walker S, Riccò S, la Torre A, Wang Z, Tamai A, Kim T K, Hoesch M, Bahramy M S, Baumberger F 2019 Adv. Electron. Mater. 5 1800860
Google Scholar
[90] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716
Google Scholar
[91] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721
Google Scholar
[92] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104
Google Scholar
[93] Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B, Sun J 2017 ACS Appl. Mater. Interfaces 9 36456
Google Scholar
[94] Zhang H, Yan X, Zhang X, Wang S, Xiong C, Zhang H, Qi S, Zhang J, Han F, Wu N, Liu B, Chen Y, Shen B, Sun J 2019 ACS Nano 13 609
Google Scholar
[95] Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W, Sun J 2018 Phys. Rev. Lett. 121 116803
Google Scholar
[96] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874
Google Scholar
[97] Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y, Hu F, Cai J, Shen B, Han W, Sun J 2019 Nano Lett. 19 1605
Google Scholar
[98] Vicente-Arche L M, Brehin J, Varotto S, Cosset-Cheneau M, Mallik S, Salazar R, Noel P, Vaz D C, Trier F, Bhattacharya S, Sander A, Le Fevre P, Bertran F, Saiz G, Menard G, Bergeal N, Barthelemy A, Li H, Lin C C, Nikonov D E, Young I A, Rault J E, Vila L, Attane J P, Bibes M 2021 Adv. Mater. 33 e2102102
Google Scholar
[99] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103
Google Scholar
[100] Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257
Google Scholar
[101] Zheng Z, Zhang Y, Lopez-Dominguez V, Sanchez-Tejerina L, Shi J, Feng X, Chen L, Wang Z, Zhang Z, Zhang K, Hong B, Xu Y, Zhang Y, Carpentieri M, Fert A, Finocchio G, Zhao W, Khalili Amiri P 2021 Nat. Commun. 12 4555
Google Scholar
[102] Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878
Google Scholar
[103] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548
Google Scholar
[104] He P, Walker S M, Zhang S S, Bruno F Y, Bahramy M S, Lee J M, Ramaswamy R, Cai K, Heinonen O, Vignale G, Baumberger F, Yang H 2018 Phys. Rev. Lett. 120 266802
Google Scholar
[105] Lee J H, Harada T, Trier F, Marcano L, Godel F, Valencia S, Tsukazaki A, Bibes M 2021 Nano Lett. 21 8687
Google Scholar
[106] Gonzalez-Hernandez R, Smejkal L, Vyborny K, Yahagi Y, Sinova J, Jungwirth T, Zelezny J 2021 Phys. Rev. Lett. 126 127701
Google Scholar
[107] Bose A, Schreiber N J, Jain R, Shao D F, Nair H P, Sun J, Zhang X S, Muller D A, Tsymbal E Y, Schlom D G, Ralph D C 2022 Nat. Electron. 5 267
Google Scholar
[108] Bai H, Han L, Feng X Y, Zhou Y J, Su R X, Wang Q, Liao L Y, Zhu W X, Chen X Z, Pan F, Fan X L, Song C 2022 Phys. Rev. Lett. 128 197202
Google Scholar
[109] Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 024428
Google Scholar
[110] Gomonay O, Jungwirth T, Sinova J 2016 Phys. Rev. Lett. 117 017202
Google Scholar
[111] Zhu D, Zhao W 2020 Phys. Rev. Appl. 13 044078
Google Scholar
[112] Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204
Google Scholar
[113] Dyrdal A, Barnas J, Fert A 2020 Phys. Rev. Lett. 124 046802
Google Scholar
[114] Yu X Q, Zhu Z G, Su G 2021 Phys. Rev. B 103 035410
Google Scholar
[115] Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Eda G, Liang G, Yang H 2021 Nat. Nanotechnol. 16 421
Google Scholar
[116] Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415
Google Scholar
[117] Lao B, Liu P, Zheng X, Lu Z, Li S, Zhao K, Gong L, Tang T, Wu K, Shi YG, Sun Y, Chen X Q, Li R W, Wang Z 2022 Phys. Rev. B 106 L220409
Google Scholar
计量
- 文章访问数: 7489
- PDF下载量: 305
- 被引次数: 0