搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高损耗信道的纠缠分发实验模拟

印娟 雍海林 吴裕平 彭承志

引用本文:
Citation:

基于高损耗信道的纠缠分发实验模拟

印娟, 雍海林, 吴裕平, 彭承志

Experimental simulation of quantum entanglement distribution over a high-loss channel

Yin Juan, Yong Hai-Lin, Wu Yu-Ping, Peng Cheng-Zhi
PDF
导出引用
  • 实验模拟了总信道损耗70 dB的纠缠分发和Bell不等式的破坏,相当于纠缠光子对从轨道高度350 km的卫星上发射(口径13.5 cm),到仰角大于10°的地面站被接收(口径100 cm)的信道损耗[11],模拟纠缠分发距离超过千公里;并且通过理论和实验研究,明确了高信道衰减下量子纠缠分发的关键技术突破点,首先必须降低系统暗计数和提高系统时间分辨,在此基础上提高纠缠源的亮度,系统将能容忍更高的信道衰减,实现更远的通信距离.
    We experimentally simulate entanglement distribution and demonstrate the violation of Bell’s inequality over 70 dB channel loss. Imaging a communication system which is composed of a satellite-based entangled photon source at a height of 350 km, two satellite-based transmitting telescopes each with a diameter of 13.5 cm, and two receiving telescopes each with a diameter of 100 cm on the ground station. At a minimum ground elevation angle of 10°, the attenuation for optical links to two ground stations over thousand kilometers is comparable to that we have achieved. Furthermore, theoretical and experimental studies demonstrate the key technology researches in entanglement distribution with high loss. First of all, we should reduce the dark noise and raise the time resolution of the system. On this basis, with the brightness enhancement of the source, the system is tolerant of higher link attenuation and long communication distance.
    • 基金项目: 国家自然科学基金(批准号:61078012)资助的课题.
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777

    [2]

    Bell J S 1964 Physics 1 195

    [3]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [5]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Duek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [6]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621

    [7]

    Peng C Z, Yang T, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Li N, Tian B L, Pan J W 2005 Phys. Rev. Lett. 94 150501

    [8]

    Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, mer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Narbieri C, Weinfurter H, Zeilinger A 2007 Nat. Phys. 3 481

    [9]

    Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T, Zeilinger A 2009 Nat. Phys. 5 389

    [10]

    Ursin R, Jennewein T, Kofler J, Perdigues J, Cacciapuoti L, Matos C J, Aspelmeyer M, Valencia A, Scheidl T, Fedrizzi A, Acin A, Barbieri C, Bianco G, Brukner , Capmany J, Cova S, Giggenbach D, Leeb W, Hadfield R H, Laflamme R, Lütkenhaus N, Milburn G, Peev M, Ralph T, Rarity J, Renner R, Samain E, Solomos N, Tittel W, Torres J P, Toyoshima M, Ortigosa-Blanch A, Pruneri V, Villoresi P, Walmsley I, Weihs G, Weinfurter H, Z · ukowski M, Zeilinger A 2009 Europhys. News 40 26

    [11]

    Pfennigbauer M, Aspelmeyer M, Leeb W, Baister G, Dreischer T, Jennewein T, Neckamm G, Perdigues J, Weinfurter H, Zeilinger A 2005 J. Opt.Commun. Netw. 4 549

    [12]

    Bonato C, Tomaello A, Deppo V D, Naletto G, Villoresi P 2009 New J. Phys. 11 045017

    [13]

    Scheidl T, Ursin R, Fedrizzi A, Ramelow S, Ma X S, Herbst T, Prevedel R, Ratschbacher L, Kofler J, Jennewein T, Zeilinger A 2009 New J. Phys. 11 085002

    [14]

    Ren J G, Zhang H, Cai X D, Yin J, Zhou F, Peng C Z 2009 Acta Phys. Sin. 58 5169 (in Chinese) [任继刚、张 涵、蔡昕东、印 娟、周 飞、彭承志 2009 58 5169]

    [15]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [16]

    Wang S K, Ren J G, Peng C Z, Jiang S, Wang X B 2007 Chin. Phys. Lett. 24 2471

    [17]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777

    [2]

    Bell J S 1964 Physics 1 195

    [3]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [5]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Duek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [6]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621

    [7]

    Peng C Z, Yang T, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Li N, Tian B L, Pan J W 2005 Phys. Rev. Lett. 94 150501

    [8]

    Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, mer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Narbieri C, Weinfurter H, Zeilinger A 2007 Nat. Phys. 3 481

    [9]

    Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T, Zeilinger A 2009 Nat. Phys. 5 389

    [10]

    Ursin R, Jennewein T, Kofler J, Perdigues J, Cacciapuoti L, Matos C J, Aspelmeyer M, Valencia A, Scheidl T, Fedrizzi A, Acin A, Barbieri C, Bianco G, Brukner , Capmany J, Cova S, Giggenbach D, Leeb W, Hadfield R H, Laflamme R, Lütkenhaus N, Milburn G, Peev M, Ralph T, Rarity J, Renner R, Samain E, Solomos N, Tittel W, Torres J P, Toyoshima M, Ortigosa-Blanch A, Pruneri V, Villoresi P, Walmsley I, Weihs G, Weinfurter H, Z · ukowski M, Zeilinger A 2009 Europhys. News 40 26

    [11]

    Pfennigbauer M, Aspelmeyer M, Leeb W, Baister G, Dreischer T, Jennewein T, Neckamm G, Perdigues J, Weinfurter H, Zeilinger A 2005 J. Opt.Commun. Netw. 4 549

    [12]

    Bonato C, Tomaello A, Deppo V D, Naletto G, Villoresi P 2009 New J. Phys. 11 045017

    [13]

    Scheidl T, Ursin R, Fedrizzi A, Ramelow S, Ma X S, Herbst T, Prevedel R, Ratschbacher L, Kofler J, Jennewein T, Zeilinger A 2009 New J. Phys. 11 085002

    [14]

    Ren J G, Zhang H, Cai X D, Yin J, Zhou F, Peng C Z 2009 Acta Phys. Sin. 58 5169 (in Chinese) [任继刚、张 涵、蔡昕东、印 娟、周 飞、彭承志 2009 58 5169]

    [15]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [16]

    Wang S K, Ren J G, Peng C Z, Jiang S, Wang X B 2007 Chin. Phys. Lett. 24 2471

    [17]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

  • [1] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法.  , 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器.  , 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究.  , 2021, (): . doi: 10.7498/aps.70.20210871
    [4] 王义, 张秋楠, 韩冬, 李元景. 多气隙电阻板室飞行时间谱仪技术.  , 2019, 68(10): 102901. doi: 10.7498/aps.68.20182192
    [5] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [6] 王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵. 基于探针光调制的皮秒分辨X-ray探测方法与实验.  , 2015, 64(20): 200701. doi: 10.7498/aps.64.200701
    [7] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输.  , 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [8] 林子扬, 万辉, 尹君, 侯国辉, 牛憨笨. 分子环境变化对振动退相时间影响的实验研究.  , 2015, 64(14): 143301. doi: 10.7498/aps.64.143301
    [9] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究.  , 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究.  , 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [12] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真.  , 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [13] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究.  , 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [14] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量.  , 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [15] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究.  , 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [16] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化.  , 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [17] 吴文智, 闫玉禧, 郑植仁, 金钦汉, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱.  , 2007, 56(5): 2926-2930. doi: 10.7498/aps.56.2926
    [18] 刘运全, 梁文锡, 张 杰, 吴建军, 田进寿, 王俊峰, 赵宝升. 飞秒电子衍射系统的静态特性研究.  , 2006, 55(12): 6500-6505. doi: 10.7498/aps.55.6500
    [19] 刘运全, 张 杰, 梁文锡, 王兆华. 飞秒掺钛蓝宝石激光三倍频理论和实验研究.  , 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [20] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用.  , 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
计量
  • 文章访问数:  9240
  • PDF下载量:  784
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-15
  • 修回日期:  2011-04-27
  • 刊出日期:  2011-03-05

/

返回文章
返回
Baidu
map