-
将Tavis-Cummings模型推广到同时考虑原子运动及与光场依赖强度耦合的情况. 运用原子约化熵和Concurrence操纵了该系统在真空场、弱相干场和强相干场条件下, 双原子-场之间以及双原子之间纠缠演化特性. 以此为依据,选择双原子与场相互作用时间、选取双原子纠缠因子、调节场模结构参数, 控制系统纯态概率幅和选择测量,制备了双原子-场W类态、双原子Bell态、Bell态原子保真态、 光场的单光子态、双光子态及稳定的数态. 实现了双原子Bell态突然产生及有限时间内的保持、Bell态原子周期量子回声的形成及其信息(态)持续保真. 结果表明, 该系统具有强大的量子信息功能, 为量子信息处理的实验实现提供了物理载体和理论参数.In this paper, the Tavis-Cummings model is generalized to simultaneously consider the atomic motion and the field via intensity dependent coupling. Under the conditions of vacuum field, weakly and strongly coherent field, the entanglement evolution properties of two-atom-field and two-atom-two-atom are investigated using atomic reduced entropy and concurrence, respectively. According to evolution characteristics above, we prepare the W-class states of two-atom-field, two-atom Bell state, fidelity state of Bell-state atoms, single-photon state, two-photon state and stable number-states of field by selecting the interaction time of the two-atom-field, selecting the entanglement factor of the two-atom, regulating the field-mode structure parameter, controlling the probability amplitude of pure state of the system and selective measurement. The manipulation of two-atom Bell state sudden generation and its maintenance in a limited time, the formation of periodic quantum echo of Bell-state atoms and the continuous fidelity of Bell-state atomic information are achieved. The results show that the system has a powerful function of quantum information, and provide the physical carrier and theoretical parameters for experimental implementation of quantum information processing.
-
Keywords:
- moving two-atom /
- intensity-dependent coupling /
- entanglement manipulation /
- preparation of quantum states
[1] Guo G C 2001 Physics 30 286 (in Chinese) [郭光灿2001 物理 30 286]
[2] Liu X J, Liu Y M, Liu M 2011 Acta Photon. Sin. 40 458 (in Chinese) [刘小娟, 刘一曼, 刘敏 2011 光子学报 40 458]
[3] Bennett C H, Divincenzo D P 2000 Nature (London) 404 247
[4] Nguyen B, Zhan A 2004 Phys. Rev. A 69 02235
[5] Wang Q, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
[6] Yu Y B, Zhu S N, Yu X Q, Xu P, Wang J F, Xie Z D, Leng H Y 2008 Phys. Rev. A 77 032317
[7] Zhou B J, Liu X J, Zhan J, Zhou R L 2012 Journal on Communication 33 177 (in Chinese) [周并举, 刘小娟, 詹杰, 周仁龙 2012 通信学报 33 177]
[8] Tavis M, Cummings F M 1986 Phys. Rev. A 170 379
[9] Huang C J, He H Y, Zhou M, Fang J Y, Huang Z H 2006 Acta Phys. Sin. 55 1764 (in Chinese) [黄佳春, 贺慧勇, 周明, 方家元, 黄祖洪 2006 55 1764]
[10] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese) [单传家, 刘继兵, 陈 涛, 刘堂昆, 黄燕霞, 李 宏 2010 59 6799]
[11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 135
[12] Li C X, Fang M F 2003 Chin. Phys. 12 0294
[13] Zhou B J, Liu X J 2011 Acta Photon. Sin. 40 1083 (in Chinese) [周并举, 刘小娟 2011 光子学报 40 1083]
[14] Liu X J, Liu Y M, Zhou B J 2010 Acta Phys. Sin. 59 8518 (in Chinese) [刘小娟, 刘一曼, 周并举 2010 59 8518]
[15] Liu T K, Wang J S, Zhang M S 2001 At. Mol. Phys. 18 58 (in Chinese) [刘堂昆, 王继锁, 詹明生 2001 原子与分子学报 18 58]
[16] Liu X J, Fang M F, Zhou Q P 2005 Acta Phys. Sin. 54 703 (in Chinese) [刘小娟, 方卯发, 周清平 2005 54 703]
[17] Liu X J, Zhao M Z, Liu Y M, Zhou B J, Peng Z H 2010 Acta Phys. Sin. 59 3227(in Chinese)[刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖 2010 59 3227]
[18] Phoenix S J, Kinght P L 1998 Phys. Lett. A 186 381
[19] Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022
-
[1] Guo G C 2001 Physics 30 286 (in Chinese) [郭光灿2001 物理 30 286]
[2] Liu X J, Liu Y M, Liu M 2011 Acta Photon. Sin. 40 458 (in Chinese) [刘小娟, 刘一曼, 刘敏 2011 光子学报 40 458]
[3] Bennett C H, Divincenzo D P 2000 Nature (London) 404 247
[4] Nguyen B, Zhan A 2004 Phys. Rev. A 69 02235
[5] Wang Q, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
[6] Yu Y B, Zhu S N, Yu X Q, Xu P, Wang J F, Xie Z D, Leng H Y 2008 Phys. Rev. A 77 032317
[7] Zhou B J, Liu X J, Zhan J, Zhou R L 2012 Journal on Communication 33 177 (in Chinese) [周并举, 刘小娟, 詹杰, 周仁龙 2012 通信学报 33 177]
[8] Tavis M, Cummings F M 1986 Phys. Rev. A 170 379
[9] Huang C J, He H Y, Zhou M, Fang J Y, Huang Z H 2006 Acta Phys. Sin. 55 1764 (in Chinese) [黄佳春, 贺慧勇, 周明, 方家元, 黄祖洪 2006 55 1764]
[10] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese) [单传家, 刘继兵, 陈 涛, 刘堂昆, 黄燕霞, 李 宏 2010 59 6799]
[11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 135
[12] Li C X, Fang M F 2003 Chin. Phys. 12 0294
[13] Zhou B J, Liu X J 2011 Acta Photon. Sin. 40 1083 (in Chinese) [周并举, 刘小娟 2011 光子学报 40 1083]
[14] Liu X J, Liu Y M, Zhou B J 2010 Acta Phys. Sin. 59 8518 (in Chinese) [刘小娟, 刘一曼, 周并举 2010 59 8518]
[15] Liu T K, Wang J S, Zhang M S 2001 At. Mol. Phys. 18 58 (in Chinese) [刘堂昆, 王继锁, 詹明生 2001 原子与分子学报 18 58]
[16] Liu X J, Fang M F, Zhou Q P 2005 Acta Phys. Sin. 54 703 (in Chinese) [刘小娟, 方卯发, 周清平 2005 54 703]
[17] Liu X J, Zhao M Z, Liu Y M, Zhou B J, Peng Z H 2010 Acta Phys. Sin. 59 3227(in Chinese)[刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖 2010 59 3227]
[18] Phoenix S J, Kinght P L 1998 Phys. Lett. A 186 381
[19] Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022
计量
- 文章访问数: 8825
- PDF下载量: 575
- 被引次数: 0