-
铜氧化物高温超导、铁基高温超导、重费米子超导和κ-型层状有机超导等超导体的超导态都与磁性有序态相邻, 且超导能隙在动量空间一般存在变号. 因此, 这些超导体的超导机理被认为有别于常规BCS超导中的电子交换声子导致的各向同性s-波配对. 在这些非常规超导中, 自旋涨落被认为是导致电子形成库珀对的主要起源之一. 本文主要以铜基和铁基高温超导为例简要综述非常规超导中的自旋序和自旋涨落性质, 二维哈伯徳模型中超导的起因及在解释铜基和铁基高温超导配对对称性的应用, 以及与非常规超导紧密相关的中子自旋共振模性质和理论解释. 我们认为, 尽管磁性和超导性的相互影响已经过多年研究, 但仍是当前一个富有挑战的活跃研究领域.High-Tc cuprates, iron-based superconductors, heavy-fermion superconductors and κ-type layered organic superconductors share some common features − the proximity of the superconducting state to the magnetic ordered state and the non-s-wave superconducting pairing function. It is generally believed that the Cooper pairings in these unconventional superconductors are mediated by spin fluctuations. In this paper, we present a brief overview on the spin dynamics and unconventional pairing, focusing on high-Tc cuprates and iron-based superconductors. In particular, we will overview the properties of the neutron spin resonance and its possible origin, the pairing mechanism in Hubbard model within the weak-coupling framework and its application to the aforesaid unconventional superconductors. We point out that the interplay between magnetism and superconductivity is still an area of active research.
-
Keywords:
- unconventional superconductivity /
- spin excitation /
- superconducting pairing symmetry /
- spin resonance
[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schaefer H 1979 Phys. Rev. Lett. 43 1892
Google Scholar
[2] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
Google Scholar
[3] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012
Google Scholar
[4] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[5] Kini A M, Geiser U, Wang H H, Carlson K D, Williams J M, Kwok W K, Vandervoort K G, Thompson J E, Stupka D, Jung D, Whangbo M H 1990 Inorg. Chem. 29 2555
Google Scholar
[6] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532
Google Scholar
[7] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki R 2003 Nature 422 53
Google Scholar
[8] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
Google Scholar
[9] Zhao Z X, Chen L Q, Yang Q S, Huang Y H, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L H, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 661
[10] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
Google Scholar
[11] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
Google Scholar
[12] Stewart G R 2017 Adv. Phys. 66 75
Google Scholar
[13] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
Google Scholar
[14] Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17
Google Scholar
[15] Chen X H, Dai P, Feng D L, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371
Google Scholar
[16] Dai P C 2015 Rev. Mod. Phys. 87 855
Google Scholar
[17] Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017
Google Scholar
[18] Rossat-Mignod J, Regnault L P, Vettier C, Bourges C, Burlet C, Bossy J, Henry J Y, Lapertot G 1991 Physica C 185-189 86
Google Scholar
[19] Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930
Google Scholar
[20] Stock C, Broholm C, Hudis J, Kang H J, Petrovic C 2008 Phys. Rev. Lett. 100 087001
Google Scholar
[21] Avci S, Chmaissem O, Chung D Y, Rosenkranz S, Goremychkin E A, Castellan J P, Todorov I S, Schlueter J A, Claus H, Daoud-Aladine A, Khalyavin D D, Kanatzidis M G, Osborn R 2012 Phys. Rev. B 85 184507
Google Scholar
[22] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud’ko S L, Canfield P C, Schmalian J, McQueeney R J, and Goldman A I 2010 Phys. Rev. Lett. 104 057006
Google Scholar
[23] Nicklas M, Stockert O, Park T, Habicht K, Kiefer K, Pham L D, Thompson J D, Fisk Z, Steglich F 2007 Phys. Rev. B 76 052401
[24] Nam M S, Ardavan A, Blundell S J, Schlueter J A 2007 Nature 449 584
Google Scholar
[25] Tranquada J M 2007 Handbook of High-Temperature Superconductivity: Theory and Experiment (New York: Spnnger), also in arXiv: 0512115
[26] Eschrig M 2006 Adv. Phys. 55 47
Google Scholar
[27] Bourges P, Regnault L P, Sidis Y, Vettier C 1996 Phys. Rev. B 53 876
Google Scholar
[28] Mazzone D G, Raymond S, Gavilano J L, Steffens P, Schneidewind A, Lapertot G, Kenzelmann M 2017 Phys. Rev. Lett. 119 187002
Google Scholar
[29] Savrasov S Y, Andersen O K 1996 Phys. Rev. Lett. 77 4430
Google Scholar
[30] Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403
Google Scholar
[31] Berk N F, Schrieffer J R 1966 Phys. Rev. Lett. 17 433
Google Scholar
[32] Emery V J 1986 Synth. Met. 13 21
Google Scholar
[33] Miyake K, Schmitt-Rink S, Varma C M 1986 Phys. Rev. B 34 6554
Google Scholar
[34] Scalapino D J, Loh E, Hirsch J E 1986 Phys. Rev. B 34 8190
Google Scholar
[35] Coldea R, Hayden S M, Aeppli G, Perring T G, Frost C D, Mason T E, Cheong S W, Fisk Z 2001 Phys. Rev. Lett. 86 5377
Google Scholar
[36] Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001
Google Scholar
[37] Piazza B D, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A, Ronnow H M 2015 Nat. Phys. 11 62
Google Scholar
[38] Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y, Sandvik A W 2017 Phys. Rev. X 7 041072
[39] Yu S L, Wang W, Dong Z Y, Yao Z J, Li J X 2018 Phys. Rev. B 98 134410
Google Scholar
[40] Singh R R P, Gelfand M P 1995 Phys. Rev. B 52 15695
Google Scholar
[41] Sandvik A W, Singh R R P 2001 Phys. Rev. Lett. 86 528
Google Scholar
[42] Powalski M, Schmidt K P, Uhrig G S 2018 SciPost Phys. 4 001
Google Scholar
[43] Hayden S M, Mook H A, Dai P, Perring T G, Dogan F 2004 Nature 429 531
Google Scholar
[44] Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534
Google Scholar
[45] Yamada K, Lee C H, Kurahashi K, Wada J, Wakimoto S, Ueki S, Kimura H, Endoh Y, Hosoya S, Shirane G, Birgeneau R J, Greven M, Kastner M A, Kim Y J 1998 Phys. Rev. B 57 6165
Google Scholar
[46] Dai P, Mook H A, Hunt R D, Dogan F 2001 Phys. Rev. B 63 054525
Google Scholar
[47] Stock C, Buyers W J L, Cowley R A, Clegg P S, Coldea R, Frost C D, Liang R, Peets D, Bonn D, Hardy W N, Birgeneau R J 2005 Phys. Rev. B 71 024522
Google Scholar
[48] 韩汝珊, 向涛, 闻海虎 编 2009 铜氧化物高温超导电性实验与理论研究 (北京: 科学出版社) 第295−315页
Han R S, Xiang T, Wen H H 2009 Experimental and Theoretical Studies on the High-Tc Cuprates (Beijing: Science Press) pp295−315 (in Chinese)
[49] Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A, Howald C 2003 Rev. Mod. Phys. 75 1201
Google Scholar
[50] Brinckman J, Lee P A 1999 Phys. Rev. Lett. 82 2915
Google Scholar
[51] Li J X, Gong C D 2002 Phys. Rev. B 66 014506
Google Scholar
[52] Wen J S, Xu G Y, Gu G D, Tranquada J M, Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
Google Scholar
[53] Johnston D C 2010 Adv. Phys. 59 803
Google Scholar
[54] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z, Wang N L 2008 Europhys. Lett. 83 27006
Google Scholar
[55] Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, Dai P 2011 Phys. Rev. B 84 054544
Google Scholar
[56] Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Hu J P, Dai P 2009 Nat. Phys. 5 555
Google Scholar
[57] Hu J P, Xu B, Liu W M, Hao N N, Wang Y P 2012 Phys. Rev. B 85 144403
Google Scholar
[58] Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M, Mao Z 2009 Phys. Rev. Lett. 103 067008
Google Scholar
[59] Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B, Hinkov V 2010 Nat. Phys. 6 178
Google Scholar
[60] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S, Luo H 2018 Phys. Rev. Lett. 120 137001
Google Scholar
[61] Brinkman W F, Serene J W, Anderson P W 1974 Phys. Rev. A 10 2386
Google Scholar
[62] Leggett A J 1975 Rev. Mod. Phys. 47 331
Google Scholar
[63] Bickers N E, Scalapino D J, Scalettar R T 1987 Internat. J. Mod. Phys. B 1 687
Google Scholar
[64] Monthoux P, Balatsky A V, Pines D 1991 Phys. Rev. Lett. 67 3448
Google Scholar
[65] Moriya T, Ueda K 2003 Rep. Prog. Phys. 66 1299
Google Scholar
[66] Abrikosov A A, GorKov L P, Dzyaloshinski I E 1963 Method of Quantum Field Theory in Statistical Physics (New York: Dover Publications, INC) pp280–291
[67] Yu S L, Li J X 2013 Chin. Phys. B 22 087411
Google Scholar
[68] Anderson P W 1987 Science 235 1196
Google Scholar
[69] Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759
Google Scholar
[70] Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwock U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016
[71] Jiang H C, Devereaux T P 2019 Science 365 1424
Google Scholar
[72] Gull E, Parcollet O, Millis A J 2013 Phys. Rev. Lett. 110 216405
Google Scholar
[73] Shih C T, Chen Y C, Lin H Q, Lee T K 1998 Phys. Rev. Lett. 81 1294
Google Scholar
[74] Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003
Google Scholar
[75] Raghu S, Qi X L, Liu C X, Scalapino D J, Zhang S C 2008 Phys. Rev. B 77 220503
Google Scholar
[76] Yao Z J, Li J X, Wang Z D 2009 New J. Phys. 11 025009
Google Scholar
[77] Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L, Wang N L 2008 EPL 83 47001
Google Scholar
[78] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004
Google Scholar
[79] Wang F, Zhai H, Ran Y, Vishwanath A, Lee D H 2009 Phys. Rev. Lett. 102 047005
Google Scholar
[80] Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New J. Phys. 11 025016
Google Scholar
[81] McKenzie R H 1997 Science 278 820
Google Scholar
[82] Kino H, Fukuyama H 1995 J. Phys. Soc. Jpn. 64 2726
Google Scholar
[83] Schmalian J 1998 Phys. Rev. Lett. 81 4232
Google Scholar
[84] Oike, H, Miyagawa K, Taniguchi H, Kanoda K 2015 Phys. Rev. Lett. 114 067002
Google Scholar
[85] Kawasugi Y, Seki K, Edagawa Y, Sato Y, Pu J, Takenobu T, Yunoki S, Yamamoto H M, Kato R 2016 Nat. Commun. 7 12356
Google Scholar
[86] Watanabe H, Seo H, Yunoki S 2019 Nat. Commun. 10 3167
Google Scholar
[87] Park W K, Sarrao J L, Thompson J D, Greene L H 2008 Phys. Rev. Lett. 100 177001
[88] Allan M P, Massee F, Morr D K, Van Dyke J, Rost A W, Mackenzie A P, Petrovic C, Davis J C 2013 Nat. Phys. 9 468
Google Scholar
[89] Zhou B B, Misra S, da Silva Neto E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D, Yazdani A 2013 Nat. Phys. 9 474
Google Scholar
[90] An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Chioka M, Machida K 2010 Phys. Rev. Lett. 104 037002
Google Scholar
[91] Monthoux P, Lonzarich G G 2001 Phys. Rev. B 63 054529
Google Scholar
[92] Nishiyama S, Miyake K, Varma C M 2013 Phys. Rev. B 88 014510
Google Scholar
[93] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球 2019 68 177101
Google Scholar
Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta Phys. Sin. 68 177101
Google Scholar
[94] 杨义峰, 李宇 2019 64 217401
Yang Y F, Li Y 2019 Acta Phys. Sin. 64 217401
[95] Fong H F, Keimer B, Anderson P W, Reznik D, Dogan F, Aksay I A 1995 Phys. Rev. Lett. 75 316
Google Scholar
[96] He H, Bourges P, Sidis Y, Ulrich C, Regnault L, Pailhes S, Berzigiarova N, Kolesnikov N, Keimer B 2002 Science 295 1045
Google Scholar
[97] Wilson S D, Dai P, Li S, Chi S, Kang H J, Lynn J W 2006 Nature 442 59
Google Scholar
[98] Blumberg G, Stojkovic B P, Klein M V 1995 Phys. Rev. B 52 741
[99] Liu D Z, Zha Y, Levin K 1995 Phys. Rev. Lett. 75 4130
Google Scholar
[100] Li J X, Yin W G, Gong C D 1998 Phys. Rev. B. 58 2895
[101] Yu G, Li Y, Motoyama E M, Greven M 2009 Nat. Phys. 5 873
Google Scholar
[102] Tinkham M 1992 Introduction to Superconductivity (2nd Edition) (New York: McGraw-Hill, Inc.) pp79–82
[103] Korshunov M M, Eremin I 2008 Phys. Rev. B 78 140509(R)
Google Scholar
[104] Maier T A, Scalapino D J 2008 Phys. Rev. B 78 020514(R)
Google Scholar
[105] Matan K, Ibuka S, Morinaga R, Chi S, Lynn J W, Christianson A D, Lumsden M D, Sato T J 2010 Phys. Rev. B 82 054515
Google Scholar
[106] Castellan J P, Rosenkranz S, Goremychkin E A, Chung D Y, Todorov I S, Kanatzidis M G, Eremin I, Knolle J, Chubukov A V, Maiti S, Norman M R, Weber F, Claus H, Guidi T, Bewley R I, Osborn R 2011 Phys. Rev. Lett. 107 177003
Google Scholar
[107] Lee C H, Kihou K, Park J T, Horigane K, Fujita K, Wasser F, Qureshi N, Sidis Y, Akimitsu J, Braden M 2016 Sci. Rep. 6 23424
Google Scholar
[108] Shen S D, Zhang X W, Wo H L, Shen Y, Feng Y, Schneidewind A, Cermák P, Wang W B, Zhao J 2020 Phys. Rev. Lett. 124 017001
Google Scholar
[109] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273
Google Scholar
[110] Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005
Google Scholar
[111] Reid J H, Tanatar M A, Juneau-Fecteau A, Gordon R T, René de Cotret S, Doiron-Leyraud N, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001
Google Scholar
[112] Richard P, Qian T, Ding H 2015 J. Phys.: Condens. Matter 27 293203
Google Scholar
[113] Chubukov A V, Gor’kov L P 2008 Phys. Rev. Lett. 101 147004
Google Scholar
[114] Song Y, Dyke J V, Lum I K, White B D, Jang S, Yazici D, Shu L, Schneidewind A, Cermák P, Qiu Y, Maple M B, Morr D K, Dai P 2016 Nat. Commun. 7 12774
Google Scholar
[115] Zhang S C 1997 Science 275 1089
Google Scholar
[116] Demler E, Zhang S C 1995 Phys. Rev. Lett. 75 4126
Google Scholar
[117] Li J X 2003 Phys. Rev. Lett. 91 037002
Google Scholar
[118] Kee H Y, Kivelson S, Aeppli G 2002 Phys. Rev. Lett. 88 257002
Google Scholar
[119] Ardavan A, Brown S, Kagoshima S, Kanoda K, Kuroki K, Mori H, Ogata, M, Uji S, Wosnitza J 2012 J. Phys. Soc. Jpn. 81 011004
Google Scholar
[120] Kang J, Yu S L, Xiang T, Li J X 2011 Phys. Rev. B 84 064520
Google Scholar
[121] Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001
Google Scholar
[122] Yamashita S, Nakazawa Y, Oguni M, Oshima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda K 2008 Nat. Phys. 4 459
Google Scholar
[123] Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
Google Scholar
[124] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
Google Scholar
[125] Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158
Google Scholar
[126] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Phys. Rev. B 85 035414
Google Scholar
[127] Yu S L, Li J X 2012 Phys. Rev. B 85 144402
Google Scholar
[128] Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94 115105
Google Scholar
[129] Fradkin E, Kivelson S A, Tranquada J M 2015 Rev. Mod. Phys. 87 457
Google Scholar
[130] Jiang Y F, Jiang H C 2020 Phys. Rev. Lett. 125 157002
Google Scholar
[131] Jiang Y F, Yao H, Yang F 2020 arXiv: 2003.02850 (unpublished)
[132] Anderson P W 1973 Mater. Res. Bull. 8 153
Google Scholar
[133] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
Google Scholar
[134] Wen J S, Yu S L, Li S Y, Yu W Q, Li J X 2019 NPJ Quantum Mater. 4 12
Google Scholar
[135] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 263
-
图 1 铜氧化物高温超导La2–xSrxCuO4/Na2–xCexCuO4、铁基超导Ba1–xKxFe2As2/Ba(Fe1–xCox)2As2、重费米子超导CeCo(In1–xCdx)5以及层状有机超导κ-(BEDT-TTF)2X (标记为Mott insulator的相区在这里表示反铁磁绝缘体)的典型相图. 图分别来自文献[14,16,23,24]
Fig. 1. Typical phase diagrams for high-Tc cuprates, iron-based superconductors, heavy fermion superconductors and κ-typed layered organic superconductors. The figures are reproduced from Refs. [14,16,23,24].
图 2 铜氧化物高温超导母体La2CuO4的自旋波色散和自旋波强度与二维波矢的依赖关系, 波矢方向见插图. (a)和(c)表示色散, (b)和(d)表示自旋波强度. 其中的实线是线性自旋波理论的计算结果(见文中介绍). 图(a)和图(b)来自文献[35], 图(c)和图(d)来自文献[36]
Fig. 2. (a), (c) Spin-wave dispersion in La2CuO4 along high symmetry directions in the two dimensional Brillouin zone as indicated in the inset. (b), (d) Spin-wave intensity as a function of the wave vector. Line is the prediction of the linear spin-wave theory. Fig. (a) and Fig. (b) are reproduced from Ref. [35], Fig. (c) and Fig. (d) from Ref. [36].
图 3 中子散射实验揭示的掺杂铜氧化物高温超导自旋激发普适色散—沙漏状色散. 图(b)用于比较掺杂和未掺杂体系自旋激发谱的变化, 其中的实线表示未掺杂体系的自旋激发色散(纵轴的单位为meV). 图(a)和图(b)分别来自文献[25]和文献[47]
Fig. 3. The universality of the spin excitations in doped high-Tc cuprates—the hourglass dispersion revealed by neutron scattering experiments. Figure (b) is shown for a comparison with the dispersion in the undoped system, which is represented schematically by the solid lines. The figures are reproduced from Ref. [25] and Ref. [47], respectively.
图 4 中子散射实验揭示的铜氧化物高温超导YaBa2Cu3O6.6自旋激发在动量空间的分布 (a)激发能
$ E = 24\;{\rm{meV}} $ ; (b)激发能$ E = 34\;{\rm{meV}} $ ; (c)激发能$ E = 75\;{\rm{meV}} $ . 其中$ 34\;{\rm{meV}} $ 对应于自旋共振模能量. 图来自文献[43]Fig. 4. Images of spin excitations in the momentum space for YaBa2Cu3O6.6 revealed by neutron scattering experiments, at different excitation energies: (a)
$ E = 24\;{\rm{meV}} $ ; (b)$ 34\;{\rm{meV}} $ ; (c)$ 75\;{\rm{meV}} $ .$ 34\;{\rm{meV}} $ is the energy of the spin resonance. Figures are reproduced from Reference [43].图 5 铁基高温超导母体BaFe2As2沿着
$ (\pi, q _{y}) $ 和$ (q_{x}, 0) $ 方向的自旋波色散. 图(a)中的实线表示利用各向异性海森伯模型计算的结果, 参数为$SJ_{1 {\rm a}} = 59.2 \pm 2.0,\; SJ_{1 {\rm b}} = -9.2 \pm 1.2,\; SJ_{2} = 13.6 \pm 1.0,\; SJ_{\rm c} = 1.8 \pm 0.3$ meV. 图(a)中的虚线代表利用各向同性海森伯模型计算的结果, 参数为$SJ_{1 {\rm a}} = SJ_{1 {\rm b}} = 18.3 \pm 1.4,\; SJ_{2} = 28.7 \pm 0.5, \;SJ_{\rm c} = 1.8$ meV. 其中S表示自旋. 图来自文献[55]Fig. 5. Figures show spin wave dispersions in BaFe2As2 along the
$ (\pi, q_{y}) $ and$ (q_{x}, 0) $ directions, respectively. In the panel (a), the solid line is a Heisenberg model calculation using anisotropic exchange couplings$SJ_{1 {\rm a}} = 59.2 \pm 2.0,\; SJ_{1 {\rm b}} = -9.2 \pm 1.2,\; SJ_{2} = 13.6 \pm 1.0,\; SJ_{\rm c} = 1.8 \pm 0.3$ meV, and the dotted line is that assuming isotropic exchange coupling$SJ_{1 {\rm a}} = SJ_{1 {\rm b}} = 18.3 \pm 1.4,\; SJ_{2} = 28.7 \pm 0.5,\; SJ_{\rm c} = 1.8$ meV. S is the spin of the system. Figures are reproduced from Ref. [55].图 6 哈伯德相互作用导致的粒子-粒子通道散射梯型费曼图. 其中的虚线表示哈伯德库仑互作用U (a)自旋单态通道的散射; (b)自旋三重态通道的散射. 图来自文献[67]
Fig. 6. Ladder Feynman diagram in the particle-particle channel coming from the Hubbard interaction, where the dotted lines denote the Hubbard interaction U: (a) The spin-single channel; (b) the spin-triplet channel. Figures are reproduced from Ref. [67].
图 7 (a)由(3)式计算的有效电子间相互作用势
$ V_{\rm s}({ q}) $ 沿着四方晶格布里渊区高对称方向的分布. 计算参数为12%空穴掺杂, 并取次近邻跃迁参数$ t' = -0.3 t $ 和$ U = 2 t $ ; (b)$ V_{\rm s}({ q}) $ 经傅里叶变换后在实空间的分布. 图(b)来自文献[67]Fig. 7. (a) Effective interaction
$ V_{\rm s}({ q}) $ between electrons arising from the exchanges of spin fluctuations along the high symmetry directions in the Brillouin zone, calculated by Eq.(3) with the next-nearest-neighbor hopping$ t' = -0.3 t $ ,$ U = 2 t $ and 12% hole doping; (b) Fourier transformation of$ V_{\rm s}({ q}) $ . Figure (b) is reproduced from Ref. [67].图 8 利用哈伯徳模型的弱耦合计算方法(方程(3)和方程(5))得到的最有利能隙函数在布里渊区的分布. 其中的粗黑线表示电子费米面, 点线表示配对能隙函数的节点(能隙为零的点). 计算参数基于对铜氧化物高温超导的近似描述, 具体见图7的说明文字. 图来自文献[67]
Fig. 8. The most favorable pairing function obtained from the weak-coupling approach to the Hubbard model Eqs.(3) and (5). The solid lines denote the Fermi surface and dotted lines denote the gap nodes. The parameters are the same as those given in the caption of Fig. 7, which are thought to describe approximately high-Tc cuprates. Figure is reproduced from Ref. [67].
图 9 (a)自旋激发率
$ \chi ({{q}}, \omega = 0) $ , (b)电子型能带和(c)空穴型能带上最有利配对函数在动量空间的分布. 这些结果基于对描写铁基超导最简单的两带哈伯徳模型[75]的弱耦合理论计算[76]. (d)费米面, 其中$ Q_{\rm{AF}} $ 表示围绕Γ的空穴费米面与围绕M的电子费米面之间的套叠波矢. 图来自文献[76]Fig. 9. Momentum dependence of the spin susceptibility
$ \chi ({{q}}, \omega = 0) $ (a), the most favorable pairing functions on the electron Fermi pocket (b) and hole Fermi pocket (c). The results are obtained from the weak-coupling approach to the two-band Hubbard model [76], which is thought to be the simplest model describing iron iron pnictides [75]. (d) The Fermi surface in which$ Q_{\rm{AF}} $ denote the nesting wavevector between the hole pocket around Γ and electron pocket around M. Figures are reproduced from Ref. [76].图 10 中子散射实验在(a)铜氧化物超导YBa2Cu3O6.92, (b)铁基超导BaFe1.85Co0.15As2和(c)重费米子超导CeCoIn5中测量的自旋极化率Im
$ \chi ({{q}}, \omega) $ 与能量的依赖关系. 其中不同符号点标志的曲线表示不同温度的结果. 图来自文献[18,59, 20]Fig. 10. Spin susceptibility Im
$ \chi ({{q}}, \omega) $ measured by neutron scattering on (a) YBa2Cu3O6.92, (b) BaFe1.85Co0.15As2 and (c) CeCoIn5 for different temperatures below and above the superconducting transition temperature. Figures are reproduced from Refs. [18, 59, 20], respectively.图 11 (a)铜氧化物超导YBa2Cu3O6.97, (b)铁基超导Ba0.6K0.4Fe2As2和(c)重费米子超导Nd0.05Ce0.95CoIn5中自旋共振峰强度随温度的依赖关系. 图分别来自文献[27, 19, 28]
Fig. 11. Temperature evolution of the neutron intensity around the spin resonance in (a) the high-Tc cuprate YBa2Cu3O6.97, (b) iron-based superconductor Ba0.6K0.4Fe2As2 and (c) heavy fermion superconductor Nd0.05Ce0.95CoIn5. Figures are reproduced from References [27, 19, 28], respectively.
-
[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schaefer H 1979 Phys. Rev. Lett. 43 1892
Google Scholar
[2] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
Google Scholar
[3] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012
Google Scholar
[4] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[5] Kini A M, Geiser U, Wang H H, Carlson K D, Williams J M, Kwok W K, Vandervoort K G, Thompson J E, Stupka D, Jung D, Whangbo M H 1990 Inorg. Chem. 29 2555
Google Scholar
[6] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532
Google Scholar
[7] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki R 2003 Nature 422 53
Google Scholar
[8] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
Google Scholar
[9] Zhao Z X, Chen L Q, Yang Q S, Huang Y H, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L H, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 661
[10] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
Google Scholar
[11] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
Google Scholar
[12] Stewart G R 2017 Adv. Phys. 66 75
Google Scholar
[13] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
Google Scholar
[14] Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17
Google Scholar
[15] Chen X H, Dai P, Feng D L, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371
Google Scholar
[16] Dai P C 2015 Rev. Mod. Phys. 87 855
Google Scholar
[17] Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017
Google Scholar
[18] Rossat-Mignod J, Regnault L P, Vettier C, Bourges C, Burlet C, Bossy J, Henry J Y, Lapertot G 1991 Physica C 185-189 86
Google Scholar
[19] Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930
Google Scholar
[20] Stock C, Broholm C, Hudis J, Kang H J, Petrovic C 2008 Phys. Rev. Lett. 100 087001
Google Scholar
[21] Avci S, Chmaissem O, Chung D Y, Rosenkranz S, Goremychkin E A, Castellan J P, Todorov I S, Schlueter J A, Claus H, Daoud-Aladine A, Khalyavin D D, Kanatzidis M G, Osborn R 2012 Phys. Rev. B 85 184507
Google Scholar
[22] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud’ko S L, Canfield P C, Schmalian J, McQueeney R J, and Goldman A I 2010 Phys. Rev. Lett. 104 057006
Google Scholar
[23] Nicklas M, Stockert O, Park T, Habicht K, Kiefer K, Pham L D, Thompson J D, Fisk Z, Steglich F 2007 Phys. Rev. B 76 052401
[24] Nam M S, Ardavan A, Blundell S J, Schlueter J A 2007 Nature 449 584
Google Scholar
[25] Tranquada J M 2007 Handbook of High-Temperature Superconductivity: Theory and Experiment (New York: Spnnger), also in arXiv: 0512115
[26] Eschrig M 2006 Adv. Phys. 55 47
Google Scholar
[27] Bourges P, Regnault L P, Sidis Y, Vettier C 1996 Phys. Rev. B 53 876
Google Scholar
[28] Mazzone D G, Raymond S, Gavilano J L, Steffens P, Schneidewind A, Lapertot G, Kenzelmann M 2017 Phys. Rev. Lett. 119 187002
Google Scholar
[29] Savrasov S Y, Andersen O K 1996 Phys. Rev. Lett. 77 4430
Google Scholar
[30] Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403
Google Scholar
[31] Berk N F, Schrieffer J R 1966 Phys. Rev. Lett. 17 433
Google Scholar
[32] Emery V J 1986 Synth. Met. 13 21
Google Scholar
[33] Miyake K, Schmitt-Rink S, Varma C M 1986 Phys. Rev. B 34 6554
Google Scholar
[34] Scalapino D J, Loh E, Hirsch J E 1986 Phys. Rev. B 34 8190
Google Scholar
[35] Coldea R, Hayden S M, Aeppli G, Perring T G, Frost C D, Mason T E, Cheong S W, Fisk Z 2001 Phys. Rev. Lett. 86 5377
Google Scholar
[36] Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001
Google Scholar
[37] Piazza B D, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A, Ronnow H M 2015 Nat. Phys. 11 62
Google Scholar
[38] Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y, Sandvik A W 2017 Phys. Rev. X 7 041072
[39] Yu S L, Wang W, Dong Z Y, Yao Z J, Li J X 2018 Phys. Rev. B 98 134410
Google Scholar
[40] Singh R R P, Gelfand M P 1995 Phys. Rev. B 52 15695
Google Scholar
[41] Sandvik A W, Singh R R P 2001 Phys. Rev. Lett. 86 528
Google Scholar
[42] Powalski M, Schmidt K P, Uhrig G S 2018 SciPost Phys. 4 001
Google Scholar
[43] Hayden S M, Mook H A, Dai P, Perring T G, Dogan F 2004 Nature 429 531
Google Scholar
[44] Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534
Google Scholar
[45] Yamada K, Lee C H, Kurahashi K, Wada J, Wakimoto S, Ueki S, Kimura H, Endoh Y, Hosoya S, Shirane G, Birgeneau R J, Greven M, Kastner M A, Kim Y J 1998 Phys. Rev. B 57 6165
Google Scholar
[46] Dai P, Mook H A, Hunt R D, Dogan F 2001 Phys. Rev. B 63 054525
Google Scholar
[47] Stock C, Buyers W J L, Cowley R A, Clegg P S, Coldea R, Frost C D, Liang R, Peets D, Bonn D, Hardy W N, Birgeneau R J 2005 Phys. Rev. B 71 024522
Google Scholar
[48] 韩汝珊, 向涛, 闻海虎 编 2009 铜氧化物高温超导电性实验与理论研究 (北京: 科学出版社) 第295−315页
Han R S, Xiang T, Wen H H 2009 Experimental and Theoretical Studies on the High-Tc Cuprates (Beijing: Science Press) pp295−315 (in Chinese)
[49] Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A, Howald C 2003 Rev. Mod. Phys. 75 1201
Google Scholar
[50] Brinckman J, Lee P A 1999 Phys. Rev. Lett. 82 2915
Google Scholar
[51] Li J X, Gong C D 2002 Phys. Rev. B 66 014506
Google Scholar
[52] Wen J S, Xu G Y, Gu G D, Tranquada J M, Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
Google Scholar
[53] Johnston D C 2010 Adv. Phys. 59 803
Google Scholar
[54] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z, Wang N L 2008 Europhys. Lett. 83 27006
Google Scholar
[55] Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, Dai P 2011 Phys. Rev. B 84 054544
Google Scholar
[56] Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Hu J P, Dai P 2009 Nat. Phys. 5 555
Google Scholar
[57] Hu J P, Xu B, Liu W M, Hao N N, Wang Y P 2012 Phys. Rev. B 85 144403
Google Scholar
[58] Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M, Mao Z 2009 Phys. Rev. Lett. 103 067008
Google Scholar
[59] Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B, Hinkov V 2010 Nat. Phys. 6 178
Google Scholar
[60] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S, Luo H 2018 Phys. Rev. Lett. 120 137001
Google Scholar
[61] Brinkman W F, Serene J W, Anderson P W 1974 Phys. Rev. A 10 2386
Google Scholar
[62] Leggett A J 1975 Rev. Mod. Phys. 47 331
Google Scholar
[63] Bickers N E, Scalapino D J, Scalettar R T 1987 Internat. J. Mod. Phys. B 1 687
Google Scholar
[64] Monthoux P, Balatsky A V, Pines D 1991 Phys. Rev. Lett. 67 3448
Google Scholar
[65] Moriya T, Ueda K 2003 Rep. Prog. Phys. 66 1299
Google Scholar
[66] Abrikosov A A, GorKov L P, Dzyaloshinski I E 1963 Method of Quantum Field Theory in Statistical Physics (New York: Dover Publications, INC) pp280–291
[67] Yu S L, Li J X 2013 Chin. Phys. B 22 087411
Google Scholar
[68] Anderson P W 1987 Science 235 1196
Google Scholar
[69] Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759
Google Scholar
[70] Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwock U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016
[71] Jiang H C, Devereaux T P 2019 Science 365 1424
Google Scholar
[72] Gull E, Parcollet O, Millis A J 2013 Phys. Rev. Lett. 110 216405
Google Scholar
[73] Shih C T, Chen Y C, Lin H Q, Lee T K 1998 Phys. Rev. Lett. 81 1294
Google Scholar
[74] Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003
Google Scholar
[75] Raghu S, Qi X L, Liu C X, Scalapino D J, Zhang S C 2008 Phys. Rev. B 77 220503
Google Scholar
[76] Yao Z J, Li J X, Wang Z D 2009 New J. Phys. 11 025009
Google Scholar
[77] Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L, Wang N L 2008 EPL 83 47001
Google Scholar
[78] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004
Google Scholar
[79] Wang F, Zhai H, Ran Y, Vishwanath A, Lee D H 2009 Phys. Rev. Lett. 102 047005
Google Scholar
[80] Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New J. Phys. 11 025016
Google Scholar
[81] McKenzie R H 1997 Science 278 820
Google Scholar
[82] Kino H, Fukuyama H 1995 J. Phys. Soc. Jpn. 64 2726
Google Scholar
[83] Schmalian J 1998 Phys. Rev. Lett. 81 4232
Google Scholar
[84] Oike, H, Miyagawa K, Taniguchi H, Kanoda K 2015 Phys. Rev. Lett. 114 067002
Google Scholar
[85] Kawasugi Y, Seki K, Edagawa Y, Sato Y, Pu J, Takenobu T, Yunoki S, Yamamoto H M, Kato R 2016 Nat. Commun. 7 12356
Google Scholar
[86] Watanabe H, Seo H, Yunoki S 2019 Nat. Commun. 10 3167
Google Scholar
[87] Park W K, Sarrao J L, Thompson J D, Greene L H 2008 Phys. Rev. Lett. 100 177001
[88] Allan M P, Massee F, Morr D K, Van Dyke J, Rost A W, Mackenzie A P, Petrovic C, Davis J C 2013 Nat. Phys. 9 468
Google Scholar
[89] Zhou B B, Misra S, da Silva Neto E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D, Yazdani A 2013 Nat. Phys. 9 474
Google Scholar
[90] An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Chioka M, Machida K 2010 Phys. Rev. Lett. 104 037002
Google Scholar
[91] Monthoux P, Lonzarich G G 2001 Phys. Rev. B 63 054529
Google Scholar
[92] Nishiyama S, Miyake K, Varma C M 2013 Phys. Rev. B 88 014510
Google Scholar
[93] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球 2019 68 177101
Google Scholar
Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, Yuan H Q 2019 Acta Phys. Sin. 68 177101
Google Scholar
[94] 杨义峰, 李宇 2019 64 217401
Yang Y F, Li Y 2019 Acta Phys. Sin. 64 217401
[95] Fong H F, Keimer B, Anderson P W, Reznik D, Dogan F, Aksay I A 1995 Phys. Rev. Lett. 75 316
Google Scholar
[96] He H, Bourges P, Sidis Y, Ulrich C, Regnault L, Pailhes S, Berzigiarova N, Kolesnikov N, Keimer B 2002 Science 295 1045
Google Scholar
[97] Wilson S D, Dai P, Li S, Chi S, Kang H J, Lynn J W 2006 Nature 442 59
Google Scholar
[98] Blumberg G, Stojkovic B P, Klein M V 1995 Phys. Rev. B 52 741
[99] Liu D Z, Zha Y, Levin K 1995 Phys. Rev. Lett. 75 4130
Google Scholar
[100] Li J X, Yin W G, Gong C D 1998 Phys. Rev. B. 58 2895
[101] Yu G, Li Y, Motoyama E M, Greven M 2009 Nat. Phys. 5 873
Google Scholar
[102] Tinkham M 1992 Introduction to Superconductivity (2nd Edition) (New York: McGraw-Hill, Inc.) pp79–82
[103] Korshunov M M, Eremin I 2008 Phys. Rev. B 78 140509(R)
Google Scholar
[104] Maier T A, Scalapino D J 2008 Phys. Rev. B 78 020514(R)
Google Scholar
[105] Matan K, Ibuka S, Morinaga R, Chi S, Lynn J W, Christianson A D, Lumsden M D, Sato T J 2010 Phys. Rev. B 82 054515
Google Scholar
[106] Castellan J P, Rosenkranz S, Goremychkin E A, Chung D Y, Todorov I S, Kanatzidis M G, Eremin I, Knolle J, Chubukov A V, Maiti S, Norman M R, Weber F, Claus H, Guidi T, Bewley R I, Osborn R 2011 Phys. Rev. Lett. 107 177003
Google Scholar
[107] Lee C H, Kihou K, Park J T, Horigane K, Fujita K, Wasser F, Qureshi N, Sidis Y, Akimitsu J, Braden M 2016 Sci. Rep. 6 23424
Google Scholar
[108] Shen S D, Zhang X W, Wo H L, Shen Y, Feng Y, Schneidewind A, Cermák P, Wang W B, Zhao J 2020 Phys. Rev. Lett. 124 017001
Google Scholar
[109] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273
Google Scholar
[110] Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005
Google Scholar
[111] Reid J H, Tanatar M A, Juneau-Fecteau A, Gordon R T, René de Cotret S, Doiron-Leyraud N, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001
Google Scholar
[112] Richard P, Qian T, Ding H 2015 J. Phys.: Condens. Matter 27 293203
Google Scholar
[113] Chubukov A V, Gor’kov L P 2008 Phys. Rev. Lett. 101 147004
Google Scholar
[114] Song Y, Dyke J V, Lum I K, White B D, Jang S, Yazici D, Shu L, Schneidewind A, Cermák P, Qiu Y, Maple M B, Morr D K, Dai P 2016 Nat. Commun. 7 12774
Google Scholar
[115] Zhang S C 1997 Science 275 1089
Google Scholar
[116] Demler E, Zhang S C 1995 Phys. Rev. Lett. 75 4126
Google Scholar
[117] Li J X 2003 Phys. Rev. Lett. 91 037002
Google Scholar
[118] Kee H Y, Kivelson S, Aeppli G 2002 Phys. Rev. Lett. 88 257002
Google Scholar
[119] Ardavan A, Brown S, Kagoshima S, Kanoda K, Kuroki K, Mori H, Ogata, M, Uji S, Wosnitza J 2012 J. Phys. Soc. Jpn. 81 011004
Google Scholar
[120] Kang J, Yu S L, Xiang T, Li J X 2011 Phys. Rev. B 84 064520
Google Scholar
[121] Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001
Google Scholar
[122] Yamashita S, Nakazawa Y, Oguni M, Oshima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda K 2008 Nat. Phys. 4 459
Google Scholar
[123] Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
Google Scholar
[124] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
Google Scholar
[125] Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158
Google Scholar
[126] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Phys. Rev. B 85 035414
Google Scholar
[127] Yu S L, Li J X 2012 Phys. Rev. B 85 144402
Google Scholar
[128] Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94 115105
Google Scholar
[129] Fradkin E, Kivelson S A, Tranquada J M 2015 Rev. Mod. Phys. 87 457
Google Scholar
[130] Jiang Y F, Jiang H C 2020 Phys. Rev. Lett. 125 157002
Google Scholar
[131] Jiang Y F, Yao H, Yang F 2020 arXiv: 2003.02850 (unpublished)
[132] Anderson P W 1973 Mater. Res. Bull. 8 153
Google Scholar
[133] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
Google Scholar
[134] Wen J S, Yu S L, Li S Y, Yu W Q, Li J X 2019 NPJ Quantum Mater. 4 12
Google Scholar
[135] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 263
计量
- 文章访问数: 13755
- PDF下载量: 1027
- 被引次数: 0