Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of interface passivation of n-i-p perovskite solar cells

Li Xiao-Guo Zhang Xin Shi Ze-Jiao Zhang Hai-Juan Zhu Cheng-Jun Zhan Yi-Qiang

Citation:

Research progress of interface passivation of n-i-p perovskite solar cells

Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang
PDF
HTML
Get Citation
  • In recent years, organic-inorganic hybrid perovskite solar cells have aroused the interest of a large number of researchers due to the advantages of large optical absorption coefficient, tunable bandgap and easy fabrication. Recently, the power conversion efficiency of organic-inorganic hybrid perovskite solar cells has been enhanced to more than 23% in laboratory. In solution processed perovskite solar cells, perovskite and charge transport layer are stacked together, due to the different crystallization rates leading to lattice mismatch near the surface region of perovskite film, resulting in a lot of interface defects, especially at the interface between perovskite and charge transport layer. What is more, the photo-induced free carriers must transfer across the interfaces to be collected. But the defects near the interface can trap photogeneration electrons, thus reducing the carrier lifetime and causing the charges to be recombined, which greatly influence the performance and stability of perovskite solar cells. Therefore, reducing and passivating these defects is critical for obtaining the high performance perovskite solar cells. Now, there have been made tremendous efforts devoting to advancing passivation techniques, such as doping and surface modification, for high efficiency perovskite solar cell with improved stability and reduced hysteresis. These approaches also contribute to improving the energy band alignment between carrier transport layers and perovskite absorber improving device performance, or resistance moisture to enhance device stability. In this review we mainly introduce the formation and the effect of defects on perovskite solar cells, analyze the mechanism for passivating the interfacial defects between charge transport layer and perovskite photo absorption layer for different materials, compare the effects of different passivation materials on the photovoltaic performance of perovskite solar cells, and summarize the role of these materials in passivating the defects. Finally we discuss the research trend and development direction of passivation defects in perovskite solar cells.
      Corresponding author: Zhu Cheng-Jun, cjzhu@imu.edu.cn ; Zhan Yi-Qiang, yqzhan@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11564027).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    NREL https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf [2019-03-31]

    [3]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, Tremolet de Villers B J, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [4]

    Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L 2017 Adv. Mater. 29 1701073Google Scholar

    [5]

    Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 J. Phys. Chem. Lett. 9 654Google Scholar

    [6]

    Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar

    [7]

    Meggiolaro D, Mosconi E, De Angelis F 2017 ACS Energy Lett. 2 2794Google Scholar

    [8]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [9]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [10]

    Cai B, Xing Y, Yang Z, Zhang W H, Qiu J 2013 Energy Environ. Sci. 6 1480Google Scholar

    [11]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [13]

    Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J 2016 Adv. Energy Mater. 6 1601128Google Scholar

    [14]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Li B, Ferguson V, Silva S R P, Zhang W 2018 Adv. Mater. Interfaces 5 1800326Google Scholar

    [17]

    Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar

    [18]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [19]

    Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar

    [20]

    Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Materials Science and Engineering R 101 1Google Scholar

    [21]

    Sherkar T S, Momblona C, Gil-Escrig L, Ávila J, Sessolo M, Bolink H J, Koster L J A 2017 ACS Energy Lett. 2 1214Google Scholar

    [22]

    Queisser H J, Haller E E 1998 Science 281 945Google Scholar

    [23]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [24]

    Collins J 2015 ECS J. Solid State Sci. Technol. 5 R3170

    [25]

    Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [26]

    Conwell E, Weisskopf V F 1950 Phys. Rev. 77 388Google Scholar

    [27]

    Yuan S, Wang J, Yang K, Wang P, Zhang X, Zhan Y, Zheng L 2018 Nanoscale 10 18909Google Scholar

    [28]

    Hou Y, Chen W, Baran D, Stubhan T, Luechinger N A, Hartmeier B, Richter M, Min J, Chen S, Quiroz C O, Li N, Zhang H, Heumueller T, Matt G J, Osvet A, Forberich K, Zhang Z G, Li Y, Winter B, Schweizer P, Spiecker E, Brabec C J 2016 Adv. Mater. 28 5112Google Scholar

    [29]

    Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar

    [30]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242Google Scholar

    [31]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [32]

    Yoon H, Kang S M, Lee J K, Choi M 2016 Energy Environ. Sci. 9 2262Google Scholar

    [33]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [34]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [35]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [36]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [37]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [38]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [39]

    Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar

    [40]

    Jiang H, Jiang G, Xing W, Xiong W, Zhang X, Wang B, Zhang H, Zheng Y 2018 ACS Appl. Mater. Interfaces 10 29954Google Scholar

    [41]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, de la Rosa E 2018 ACS Sustainable Chem. Eng. 6 15391Google Scholar

    [42]

    Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar

    [43]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [44]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [45]

    Wang Z, Kamarudin M A, Huey N C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [46]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [47]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [48]

    Hou M, Zhang H, Wang Z, Xia Y, Chen Y, Huang W 2018 ACS Appl. Mater. Interfaces 10 30607Google Scholar

    [49]

    You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar

    [50]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651Google Scholar

    [51]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 1604305

    [52]

    Hou X, Zhou J, Huang S, Ou-Yang W, Pan L, Chen X 2017 Chem. Eng. J 330 947Google Scholar

    [53]

    Hou X, Pan L, Huang S, Wei O Y, Chen X 2017 Electrochimica Acta 236 351Google Scholar

    [54]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [55]

    Jain S M, Qiu Z, Häggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770Google Scholar

    [56]

    Song D, Wei D, Cui P, Li M, Duan Z, Wang T, Ji J, Li Y, Mbengue J M, Li Y, He Y, Trevor M, Park N-G 2016 J. Mater. Chem. A 4 6091Google Scholar

    [57]

    Hayashi H, Lightcap I V, Tsujimoto M, Takano M, Umeyama T, Kamat P V, Imahori H 2011 J. Am. Chem. Soc. 133 7684Google Scholar

    [58]

    Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C 2010 ACS Nano 4 2865Google Scholar

    [59]

    Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L 2014 J. Mater. Chem. A 2 20105Google Scholar

    [60]

    Luo H, Lin X, Hou X, Pan L, Huang S, Chen X 2017 Nanomicro Lett. 9 39

    [61]

    Yang Z, Dou J, Wang M 2018 Solar RRL 2 1800177Google Scholar

    [62]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [63]

    Yao K, Wang X, Xu Y X, Li F 2015 Nano Energy 18 165Google Scholar

    [64]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [65]

    Li C, Lv X, Cao J, Tang Y 2019 Chin. J. Chem. 37 30

    [66]

    Hou X, Huang S, Ou-Yang W, Pan L, Sun Z, Chen X 2017 ACS Appl. Mater. Interfaces 9 35200Google Scholar

  • 图 1  钙钛矿晶体结构示意图

    Figure 1.  Structure diagram of perovskite crystal.

    图 2  晶体缺陷类型[16] (a)完美晶体结构; (b)空位缺陷; (c)间隙缺陷; (d)反位替代缺陷; (e)替位杂质缺陷; (f)间隙杂质缺陷

    Figure 2.  Types of crystal defects[16]: (a) perfect lattice; (b) vacancy defects; (c) interstitial defects; (d) antisite substitution defects; (e) substitutional impurity; (f) interstitial impurity.

    图 3  (a) KCl钝化缺陷原理图[42]; (b)磺酸钾钝化缺陷示意图[45]; (c) APTES钝化缺陷原理图[46]; (d) DA钝化缺陷原理图[48]; (e) HS的结构式[49]; (f) HOCO-R-NH3+在界面处的结构[50]

    Figure 3.  (a) Schematic diagram of KCl passivation defects[42]; (b) schematic diagram of potassium xanthate passivation defects[45]; (c) schematic diagram of APTES passivation PSCs interface defects[46]; (d) schematic diagram of DA passivation PSCs interface defects[48]; (e) diagram structure of HS[49]; (f) structure of HOCO-R-NH3+ at interface[50].

    图 4  (a)钙钛矿表面电子陷阱的产生[54]; (b)吡啶缺陷钝化原理图[54]; (c)碘五氟苯与卤素阴离子之间卤素键作用的示意图[47]; (d) TPA掺杂钙钛矿器件的I-V曲线, 插图为TPA钝化原理图以及钙钛矿薄膜的SEM图[66]

    Figure 4.  (a) Formation of perovskite surface traps[54]; (b) schematic diagram of pyridine passivation defects[54]; (c) schematic of the halogen bond interaction between the IPFB and halogen anion[47]; (d) I-V curves of TAP-doped perovskite devices, illustrated diagrams is TAP passivation schematic and SEM of perovskite films[66].

    图 5  所有钝化方法以及钝化的机理的总结

    Figure 5.  Summary of all passivation methods and passivation mechanism.

    表 1  钝化和不钝化ETL/Perovskite界面钙钛矿太阳能电池的性能

    Table 1.  Performance of perovskite solar cells with and without passivation on ETL/Perovskite interface.

    Interface to be modified Modifier Voc/V Jsc/mA·cm–2 FF PCE/% 文献
    SnO2/MAPbIxCl3–x LiF W 1.15 21.62 0.73 18.33 [27]
    W/O 1.08 20.40 0.71 15.60
    SnO2/MAPbIxCl3–x KCl W 1.12 21.82 0.79 19.44 [42]
    W/O 1.08 21.59 0.76 18.12
    TiO2/MAPbIxCl3–x CsBr W 1.06 20.70 0.75 16.30 [44]
    W/O 0.99 18.70 0.69 13.10
    SnO2/MAPbI3 Xanthate W 1.06 22.61 0.70 18.41 [45]
    W/O 1.03 21.74 0.73 16.56
    SnO2/MAPbI3 APTES SAM W 1.06 20.84 0.66 14.69 [46]
    W/O 1.16 21.23 0.69 17.03
    SnO2/MAPbI3 DA SAM W 1.05 21.80 0.73 16.87 [48]
    W/O 1.04 19.96 0.67 14.05
    TiO2/MAPbI3 Li-TiO2 W 1.03 23.91 0.74 18.25 [52]
    W/O 1.01 22.46 0.69 15.64
    TiO2/MAPbI3 HS W 1.11 23.34 0.77 20.10 [49]
    W/O 1.09 21.29 0.74 17.20
    TiO2/MAPbI3 GABAH+I W 1.00 19.20 0.62 12.00 [50]
    W/O 8.00
    TiO2/MAPbI3 LA W 0.99 22.40 0.64 14.22 [51]
    W/O 0.95 17.08 0.66 10.76
    TiO2/MAPbI3 GnPs W 1.00 23.67 0.69 15.14 [41]
    W/O 0.97 22.33 0.80 19.23
    DownLoad: CSV

    表 2  钝化和不钝化Perovskite/HTL钙钛矿太阳能电池的性能

    Table 2.  Performance of perovskite solar cells with and without passivation on Perovskite/HTL interface.

    Interface to be modified Modifier Voc/V Jsc/mA·cm–2 FF PCE/% 文献
    MAPbIxCl3–x/Spiro-OMeTAD IPFB W 1.06 23.38 0.67 15.70 [47]
    W/O 1.02 23.80 0.57 13.00
    MAPbI3/Spiro-OMeTAD GO W 1.03 20.00 0.72 14.50 [59]
    W/O 0.93 18.50 0.64 10.00
    MAPbIxCl3–x/Spiro-OMeTAD Thiophene W 0.95 20.70 0.68 13.10 [54]
    W/O 1.02 21.30 0.68 15.30
    MAPbIxCl3–x/Spiro-OMeTAD Pyridine W 0.95 20.70 0.68 13.10 [54]
    W/O 1.05 24.10 0.72 16.50
    MAPbI3/Spiro-OMeTAD V-pyridine W 1.15 22.00 0.73 9.50 [55]
    W/O 0.80 19.20 0.63 18.50
    MAPbI3/Spiro-OMeTAD F4TCNQ W 1.04 19.40 0.70 15.30 [56]
    W/O 1.06 20.30 0.75 18.10
    MAPbI3/Spiro-OMeTAD ZnPc W 1.09 23.23 0.77 19.56 [65]
    W/O 1.08 22.93 0.76 18.83
    MAPbI3/Spiro-OMeTAD TAP W 1.05 23.49 0.75 18.51 [66]
    W/O 0.99 22.09 0.71 15.53
    DownLoad: CSV
    Baidu
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    NREL https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf [2019-03-31]

    [3]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, Tremolet de Villers B J, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [4]

    Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L 2017 Adv. Mater. 29 1701073Google Scholar

    [5]

    Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 J. Phys. Chem. Lett. 9 654Google Scholar

    [6]

    Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar

    [7]

    Meggiolaro D, Mosconi E, De Angelis F 2017 ACS Energy Lett. 2 2794Google Scholar

    [8]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [9]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [10]

    Cai B, Xing Y, Yang Z, Zhang W H, Qiu J 2013 Energy Environ. Sci. 6 1480Google Scholar

    [11]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [13]

    Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J 2016 Adv. Energy Mater. 6 1601128Google Scholar

    [14]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Li B, Ferguson V, Silva S R P, Zhang W 2018 Adv. Mater. Interfaces 5 1800326Google Scholar

    [17]

    Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar

    [18]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [19]

    Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar

    [20]

    Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Materials Science and Engineering R 101 1Google Scholar

    [21]

    Sherkar T S, Momblona C, Gil-Escrig L, Ávila J, Sessolo M, Bolink H J, Koster L J A 2017 ACS Energy Lett. 2 1214Google Scholar

    [22]

    Queisser H J, Haller E E 1998 Science 281 945Google Scholar

    [23]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [24]

    Collins J 2015 ECS J. Solid State Sci. Technol. 5 R3170

    [25]

    Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [26]

    Conwell E, Weisskopf V F 1950 Phys. Rev. 77 388Google Scholar

    [27]

    Yuan S, Wang J, Yang K, Wang P, Zhang X, Zhan Y, Zheng L 2018 Nanoscale 10 18909Google Scholar

    [28]

    Hou Y, Chen W, Baran D, Stubhan T, Luechinger N A, Hartmeier B, Richter M, Min J, Chen S, Quiroz C O, Li N, Zhang H, Heumueller T, Matt G J, Osvet A, Forberich K, Zhang Z G, Li Y, Winter B, Schweizer P, Spiecker E, Brabec C J 2016 Adv. Mater. 28 5112Google Scholar

    [29]

    Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar

    [30]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242Google Scholar

    [31]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [32]

    Yoon H, Kang S M, Lee J K, Choi M 2016 Energy Environ. Sci. 9 2262Google Scholar

    [33]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [34]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [35]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [36]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [37]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [38]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [39]

    Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar

    [40]

    Jiang H, Jiang G, Xing W, Xiong W, Zhang X, Wang B, Zhang H, Zheng Y 2018 ACS Appl. Mater. Interfaces 10 29954Google Scholar

    [41]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, de la Rosa E 2018 ACS Sustainable Chem. Eng. 6 15391Google Scholar

    [42]

    Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar

    [43]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [44]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [45]

    Wang Z, Kamarudin M A, Huey N C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [46]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [47]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [48]

    Hou M, Zhang H, Wang Z, Xia Y, Chen Y, Huang W 2018 ACS Appl. Mater. Interfaces 10 30607Google Scholar

    [49]

    You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar

    [50]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651Google Scholar

    [51]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 1604305

    [52]

    Hou X, Zhou J, Huang S, Ou-Yang W, Pan L, Chen X 2017 Chem. Eng. J 330 947Google Scholar

    [53]

    Hou X, Pan L, Huang S, Wei O Y, Chen X 2017 Electrochimica Acta 236 351Google Scholar

    [54]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [55]

    Jain S M, Qiu Z, Häggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770Google Scholar

    [56]

    Song D, Wei D, Cui P, Li M, Duan Z, Wang T, Ji J, Li Y, Mbengue J M, Li Y, He Y, Trevor M, Park N-G 2016 J. Mater. Chem. A 4 6091Google Scholar

    [57]

    Hayashi H, Lightcap I V, Tsujimoto M, Takano M, Umeyama T, Kamat P V, Imahori H 2011 J. Am. Chem. Soc. 133 7684Google Scholar

    [58]

    Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C 2010 ACS Nano 4 2865Google Scholar

    [59]

    Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L 2014 J. Mater. Chem. A 2 20105Google Scholar

    [60]

    Luo H, Lin X, Hou X, Pan L, Huang S, Chen X 2017 Nanomicro Lett. 9 39

    [61]

    Yang Z, Dou J, Wang M 2018 Solar RRL 2 1800177Google Scholar

    [62]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [63]

    Yao K, Wang X, Xu Y X, Li F 2015 Nano Energy 18 165Google Scholar

    [64]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [65]

    Li C, Lv X, Cao J, Tang Y 2019 Chin. J. Chem. 37 30

    [66]

    Hou X, Huang S, Ou-Yang W, Pan L, Sun Z, Chen X 2017 ACS Appl. Mater. Interfaces 9 35200Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Research on the fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [6] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [8] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Liu Yu-Xue, Ming Yi-Dong, Wu Cong-Cong. Properties and improvements of chlorine-doped methylamine-based perovskites. Acta Physica Sinica, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [11] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [12] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [13] Gao Jiu-Lin, Lian Ya-Jun, Yang Ye, Li Guo-Qing, Yang Xiao-Hui. High-efficiency sky blue perovskite light-emitting diodes with ammonium thiocyanate additive. Acta Physica Sinica, 2021, 70(19): 198502. doi: 10.7498/aps.70.20211046
    [14] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [15] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [16] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
Metrics
  • Abstract views:  22926
  • PDF Downloads:  680
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2019
  • Accepted Date:  03 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回
Baidu
map