Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells

Wang Fu-Zhi Tan Zhan-Ao Dai Song-Yuan Li Yong-Fang

Citation:

Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells

Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The development of highly efficient and low-cost solar cells is the key to large-scale application of solar photovoltaic technology. In recent years, the solution-processed organic-inorganic perovskite solar cells attracted considerable attention because of their advantages of high energy conversion efficiency, low cost, and ease of processing. The ambipolar semiconducting characteristic of perovskite enables the construction of planar heterojunction architecture to be possible in perovskite-based solar cells. This kind of architecture avoids the use of mesoporous metal oxide film, which simplifies the processing route and makes it easier to fabricate flexible and tandem perovskite-based solar cells. Planar heterojunction perovskite solar cells can be divided into n-i-p type and p-i-n type according to the charge flow direction. Two interfaces are formed between perovskite film and hole/electron transport layer, where efficient charge separation can be realized. Hole and electron transport layers can form separated continuous paths for the transport of holes and electrons, thus beneficial to improving exciton separation, charge transportation, and collection efficiency. In addition, this planar architecture avoids the use of high temperature sintered mesoporous metal oxide framework; this is beneficial to expanding the choice of the charge transport materials. In this paper, we review the recent progress on the planar heterojunction perovskite solar cells. First, we introduce the material properties of perovskite, the evolution of device architecture, and the working principle of p-i-n type and n-i-p type planar heterojunction perovskite solar cells. Then, we review the recent progress and optimization of planar heterojunction perovskite solar cells from every aspect of perovskite preparation and the selection of electron/hole transport materials. Finally, we would like to give a perspective view on and address the concerns about perovskite solar cells.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51173040, 91023039, 51303052), the Specialized Research Fund for the Doctoral Program (Grant No. 20130036110007), the Program for New Century Excellent Talents in University of China (Grant No. NCET-12-0848), Beijing Higher Education Young Elite Program (Grant No. YETP0713), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 13ZD11, 2014ZD11, 2014MS35, 2014ZZD07).
    [1]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, CurchodBasile F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, NazeeruddinMd K, Grätzel M 2014 Nat. Chem. 6 242

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [7]

    Albert V A, Barbazuk W B, dePamphilis C W, Der J P, Leebens-Mack J, Ma H, Palmer J D, Rounsley S, Sankoff D, Schuster S C, Soltis D E, Soltis P S, Wessler S R, Wing R A, Albert V A, Ammiraju J S, Barbazuk W B, Chamala S, Chanderbali A S, dePamphilis C W, Der J P, Determann R, Leebens-Mack J, Ma H, Ralph P, Rounsley S, Schuster S C, Soltis D E, Soltis P S, Talag J, Tomsho L, Walts B, Wanke S, Wing R A, Albert V A, Barbazuk W B, Chamala S, Chanderbali A S, Chang T H, Determann R, Lan T, Soltis D E, Soltis P S, Arikit S, Axtell M J, Ayyampalayam S, Barbazuk W B, Burnette J M 3rd, Chamala S, De Paoli E, dePamphilis C W, Der J P, Estill J C, Farrell N P, Harkess A, Jiao Y, Leebens-Mack J, Liu K, Mei W, Meyers B C, Shahid S, Wafula E, Walts B, Wessler S R, Zhai J, Zhang X, Albert V A, Carretero-Paulet L, dePamphilis C W, Der J P, Jiao Y, Leebens-Mack J, Lyons E, Sankoff D, Tang H, Wafula E, Zheng C, Albert V A, Altman N S, Barbazuk W B, Carretero-Paulet L, dePamphilis C W, Der J P, Estill J C, Jiao Y, Leebens-Mack J, Liu K, Mei W, Wafula E, Altman NS, Arikit S, Axtell M J, Chamala S, Chanderbali A S, Chen F, Chen J Q, Chiang V, De Paoli E, dePamphilis C W, Der J P, Determann R, Fogliani B, Guo C, Harholt J, Harkess A, Job C, Job D, Kim S, Kong H, Leebens-Mack J, Li G, Li L, Liu J, Ma H, Meyers B C, Park J, Qi X, Rajjou L, Burtet-Sarramegna V, Sederoff R, Shahid S, Soltis D E, Soltis P S, Sun Y H, Ulvskov P, Villegente M, Xue J Y, Yeh T F, Yu X, Zhai J, Acosta J J, Albert VA, Barbazuk W B, Bruenn R A, Chamala S, de Kochko A, dePamphilis C W, Der JP, Herrera-Estrella LR, Ibarra-Laclette E, Kirst M, Leebens-Mack J, Pissis S P, Poncet V, Schuster S C, Soltis D E, Soltis P S, Tomsho L 2013 Science 342 1438

    [8]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [9]

    Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M 2014 Energ. Environ. Sci. 7 399

    [10]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [11]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [13]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628

    [14]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [15]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

    [16]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142

    [17]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. Engl. 53 9898

    [18]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [19]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E 2012 Sci. Rep. 2 591

    [20]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [21]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energ. Environ. Sci. 6 1739

    [22]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [23]

    Bi D, Moon S-J, Häggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A 2013 RSC Advances 3 18762

    [24]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [25]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H j, Sarkar A, NazeeruddinMd K, Grätzel M, Seok S I 2013 Na.t Photon. 7 486

    [26]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [27]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [28]

    Zhang H, Azimi H, Hou Y, Ameri T, Przybilla T, Spiecker E, Kraft M, Scherf U, Brabec C J 2014 Chem. Mater. 26 5190

    [29]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128

    [30]

    Kim J, Kim G, Kim T K, Kwon S, Back H, Lee J, Lee S H, Kang H, Lee K 2014 J. Mater. Chem. A 2 17291

    [31]

    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energ. Environ. Sci. 7 2642

    [32]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [33]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energ. Environ. Sci. 7 2359

    [34]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energ. Environ. Sci. 7 2619

    [35]

    Singh T B, Marjanovi?N, Matt G J, Gnes S, Sariciftci N S, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S 2005 Org. Electron. 6 105

    [36]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [37]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V 2014 J. Am. Chem. Soc. 136 5189

    [38]

    Liang P W, Chueh C C, Xin X K, Zuo F, Williams S T, Liao C Y, Jen A K Y 2014 Adv. Energy. Mater. DOI:101002aenm201400960

    [39]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2013 Adv. Mater. 26 2041

    [40]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [41]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [42]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [43]

    Choi J J, Yang X, Norman Z M, Billinge S J L, Owen J S 2013 Nano. Lett. 14 127

    [44]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [45]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [46]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505

    [47]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energ. Environ. Sci. 7 2944

    [48]

    Hsu H-L, Chen C, Chang J-Y, Yu Y-Y, Shen Y-K 2014 Nanoscale 6 10281

    [49]

    Bi D, Boschloo G, Schwarzmuller S, Yang L, Johansson E M, Hagfeldt A 2013 Nanoscale 5 11686

    [50]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H 2014 ACS Nano 8 1674

    [51]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K, Snaith H J 2013 Nano. Lett. 13 3124

    [52]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [53]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [54]

    Grätzel M 2014 Nat. Mater. 13 838

    [55]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [56]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [57]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [58]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [59]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094

    [60]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [61]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energ. Environ. Sci. 7 3061

    [62]

    Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y, Jen A K 2014 Adv. Mater. 26 6454

    [63]

    Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G 2014 RSC Advances 4 28964

    [64]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851

    [65]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H-H, Liu Y, Li G, Yang Y 2013 J. Am. Chem. Soc. 136 622

    [66]

    O'Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy. Mater. 2 82

    [67]

    Lim K G, Kim H B, Jeong J, Kim H, Kim J Y, Lee T W 2014 Adv. Mater. 26 6461

    [68]

    Yip H L, Jen A K Y 2012 Energ. Environ. Sci. 5 5994

    [69]

    Chen S, Manders J R, Tsang S W, So F 2012 J. Mater. Chem. A 22 24202

    [70]

    Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [71]

    Wang F Z, Sun G, Li C, Liu J Y, Hu S Q, Zheng H, Tan Z A, Li Y F 2014 ACS Appl. Mater. Interfaces 6 9458

    [72]

    Liu D, Kelly T L 2013 Nat. Photon. 8 133

    [73]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energ. Environ. Sci. 7 2934

    [74]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

  • [1]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, CurchodBasile F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, NazeeruddinMd K, Grätzel M 2014 Nat. Chem. 6 242

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [7]

    Albert V A, Barbazuk W B, dePamphilis C W, Der J P, Leebens-Mack J, Ma H, Palmer J D, Rounsley S, Sankoff D, Schuster S C, Soltis D E, Soltis P S, Wessler S R, Wing R A, Albert V A, Ammiraju J S, Barbazuk W B, Chamala S, Chanderbali A S, dePamphilis C W, Der J P, Determann R, Leebens-Mack J, Ma H, Ralph P, Rounsley S, Schuster S C, Soltis D E, Soltis P S, Talag J, Tomsho L, Walts B, Wanke S, Wing R A, Albert V A, Barbazuk W B, Chamala S, Chanderbali A S, Chang T H, Determann R, Lan T, Soltis D E, Soltis P S, Arikit S, Axtell M J, Ayyampalayam S, Barbazuk W B, Burnette J M 3rd, Chamala S, De Paoli E, dePamphilis C W, Der J P, Estill J C, Farrell N P, Harkess A, Jiao Y, Leebens-Mack J, Liu K, Mei W, Meyers B C, Shahid S, Wafula E, Walts B, Wessler S R, Zhai J, Zhang X, Albert V A, Carretero-Paulet L, dePamphilis C W, Der J P, Jiao Y, Leebens-Mack J, Lyons E, Sankoff D, Tang H, Wafula E, Zheng C, Albert V A, Altman N S, Barbazuk W B, Carretero-Paulet L, dePamphilis C W, Der J P, Estill J C, Jiao Y, Leebens-Mack J, Liu K, Mei W, Wafula E, Altman NS, Arikit S, Axtell M J, Chamala S, Chanderbali A S, Chen F, Chen J Q, Chiang V, De Paoli E, dePamphilis C W, Der J P, Determann R, Fogliani B, Guo C, Harholt J, Harkess A, Job C, Job D, Kim S, Kong H, Leebens-Mack J, Li G, Li L, Liu J, Ma H, Meyers B C, Park J, Qi X, Rajjou L, Burtet-Sarramegna V, Sederoff R, Shahid S, Soltis D E, Soltis P S, Sun Y H, Ulvskov P, Villegente M, Xue J Y, Yeh T F, Yu X, Zhai J, Acosta J J, Albert VA, Barbazuk W B, Bruenn R A, Chamala S, de Kochko A, dePamphilis C W, Der JP, Herrera-Estrella LR, Ibarra-Laclette E, Kirst M, Leebens-Mack J, Pissis S P, Poncet V, Schuster S C, Soltis D E, Soltis P S, Tomsho L 2013 Science 342 1438

    [8]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [9]

    Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M 2014 Energ. Environ. Sci. 7 399

    [10]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [11]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [13]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628

    [14]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [15]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

    [16]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142

    [17]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. Engl. 53 9898

    [18]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [19]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E 2012 Sci. Rep. 2 591

    [20]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [21]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energ. Environ. Sci. 6 1739

    [22]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [23]

    Bi D, Moon S-J, Häggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A 2013 RSC Advances 3 18762

    [24]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [25]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H j, Sarkar A, NazeeruddinMd K, Grätzel M, Seok S I 2013 Na.t Photon. 7 486

    [26]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [27]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [28]

    Zhang H, Azimi H, Hou Y, Ameri T, Przybilla T, Spiecker E, Kraft M, Scherf U, Brabec C J 2014 Chem. Mater. 26 5190

    [29]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128

    [30]

    Kim J, Kim G, Kim T K, Kwon S, Back H, Lee J, Lee S H, Kang H, Lee K 2014 J. Mater. Chem. A 2 17291

    [31]

    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energ. Environ. Sci. 7 2642

    [32]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [33]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energ. Environ. Sci. 7 2359

    [34]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energ. Environ. Sci. 7 2619

    [35]

    Singh T B, Marjanovi?N, Matt G J, Gnes S, Sariciftci N S, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S 2005 Org. Electron. 6 105

    [36]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [37]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V 2014 J. Am. Chem. Soc. 136 5189

    [38]

    Liang P W, Chueh C C, Xin X K, Zuo F, Williams S T, Liao C Y, Jen A K Y 2014 Adv. Energy. Mater. DOI:101002aenm201400960

    [39]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2013 Adv. Mater. 26 2041

    [40]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [41]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [42]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [43]

    Choi J J, Yang X, Norman Z M, Billinge S J L, Owen J S 2013 Nano. Lett. 14 127

    [44]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [45]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [46]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505

    [47]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energ. Environ. Sci. 7 2944

    [48]

    Hsu H-L, Chen C, Chang J-Y, Yu Y-Y, Shen Y-K 2014 Nanoscale 6 10281

    [49]

    Bi D, Boschloo G, Schwarzmuller S, Yang L, Johansson E M, Hagfeldt A 2013 Nanoscale 5 11686

    [50]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H 2014 ACS Nano 8 1674

    [51]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K, Snaith H J 2013 Nano. Lett. 13 3124

    [52]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [53]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [54]

    Grätzel M 2014 Nat. Mater. 13 838

    [55]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [56]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [57]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [58]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [59]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094

    [60]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [61]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energ. Environ. Sci. 7 3061

    [62]

    Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y, Jen A K 2014 Adv. Mater. 26 6454

    [63]

    Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G 2014 RSC Advances 4 28964

    [64]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851

    [65]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H-H, Liu Y, Li G, Yang Y 2013 J. Am. Chem. Soc. 136 622

    [66]

    O'Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy. Mater. 2 82

    [67]

    Lim K G, Kim H B, Jeong J, Kim H, Kim J Y, Lee T W 2014 Adv. Mater. 26 6461

    [68]

    Yip H L, Jen A K Y 2012 Energ. Environ. Sci. 5 5994

    [69]

    Chen S, Manders J R, Tsang S W, So F 2012 J. Mater. Chem. A 22 24202

    [70]

    Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [71]

    Wang F Z, Sun G, Li C, Liu J Y, Hu S Q, Zheng H, Tan Z A, Li Y F 2014 ACS Appl. Mater. Interfaces 6 9458

    [72]

    Liu D, Kelly T L 2013 Nat. Photon. 8 133

    [73]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energ. Environ. Sci. 7 2934

    [74]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [5] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [6] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [7] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [8] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [9] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [10] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [11] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [13] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [14] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [15] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [17] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Effects of emitting and hole transporting layers on the performance of white organic light-emitting divice. Acta Physica Sinica, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [20] Jiang Yan, Yang Sheng-Yi, Zhang Xiu-Long, Teng Feng, Xu Zheng, Hou Yan-Bing. ZnSe-based organic-inorganic heterostructure diodes. Acta Physica Sinica, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
Metrics
  • Abstract views:  13444
  • PDF Downloads:  4198
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2014
  • Accepted Date:  21 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map