Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique

Yang Ying-Guo Yin Guang-Zhi Feng Shang-Lei Li Meng Ji Geng-Wu Song Fei Wen Wen Gao Xing-Yu

Citation:

An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique

Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Humid environment plays a vital role in affecting the performance stability of the organic metal halide perovskite solar cells. Therefore, in situ monitoring the micro-structural evolution of perovskite film in real time will help to reveal the micro-mechanism for the device performance decay induced by humidity. A device providing a controllable humid environment has been set up at X-ray diffraction beamline of Shanghai Synchrotron Radiation Facility, which is used to monitor in situ the perovskite film micro-structural evolution in real time in a humid environment by using grazing incidence X-ray diffraction(GIXRD). After a perovskite film is exposed to the environment with a relative humidity of 60%±2%, a new component emerges near the perovskite(110) diffraction peak in the early stage of the exposure, which is observed for the first time. This new component is attributed to the perovskite intermediate phase structure transformed from the gradual degradation of the perovskite crystalline. Meanwhile, UV-Vis absorption measurements show that humidity causes the absorption of the film to decrease slightly with the blue shift of the absorption edge at ~770 nm, which indicates a reduced amount of perovskite crystalline or a decrease of perovskite crystallinity. Scan electron microscope further demonstrates that the film after the humid exposure presents a worse morphology with a lower coverage, bigger pores, and larger voids between crystalline than the pristine film. The current-voltage(J-V) measurements of the solar cells fabricated on the perovskite films before and after the humid exposure show that both the filling factor and the power conversion efficiencydecrease by over 30% due to the humidity. The present work demonstrates that the close relationship between the device performance and the perovskite film microstructure as well as their morphologies can be studied very well by in-situ synchrotron based characterization technique. The present study could lay a good foundation for the understanding of the degradation mechanism for the organic metal halide perovskites.
    [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K 2013 Nature 499 316

    [2]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 11 5615

    [3]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grötzel M 2013 Science 342 344

    [4]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [5]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S 2014 Science 345 542

    [6]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295

    [7]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Il Seol S 2014 Nat. Mater. 13 897

    [8]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [9]

    Niu G, Li W, Meng F 2014 J. Mater. Chem. A 2 705

    [10]

    Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S 2015 Adv. Funct. Mater. 25 6671

    [11]

    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J 2014 Adv. Mater. 26 6503

    [12]

    Toolan D T, Howse J R 2013 J. Mater. Chem. C 1 603

    [13]

    Chou K W, Yan B, Li R, Li E Q, Zhao K, Anjum D H 2013 Adv. Mater. 25 1923

    [14]

    Saliba M, Tan K W, Sai H, Moore D T, Scott T, Zhang W 2014 J. Phys. Chem. C 118 17171

    [15]

    Tan K W, Moore D T, Saliba M, Sai H, Estroff L A, Hanrath T 2014 ACS Nano 8 4730

    [16]

    Miyadera T, Shibatax Y, Koganezawa T, Murakami T N, Sugita T, Tanigaki N, Chikamatsu M 2015 Nano Lett. 15 5630

    [17]

    Yang J, Braden D S, Liu D, Kelly T L 2015 ACS Nano 9 1955

    [18]

    Li D, Simon A B, Victor W B, Ilka M H, Julian M, Alexander K, Lu H, Wolfgang T, Markus M, Hans-Jrgen B, Stefan A L W, Rdiger B 2016 J. Phys. Chem. C 120 6363

    [19]

    Barrows A T, Lilliu S, Pearson A J 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201601309

    [20]

    Wang D, Zhu H M, Zhou Z M, Wang Z W, L S L, Feng S P, Cui G L 2015 Acta Phys. Sin. 64 038403 (in Chinese)[王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊2015 64 038403]

    [21]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015 64 038404]

    [22]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese)[石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波2015 64 038402]

    [23]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513

    [24]

    Hu L, Shao G, Jiang T, Li D, L X, Wang H, Liu X, Song H, Tang J, Liu H 2015 ACS Appl. Mater. Interfaces 7 25113

    [25]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G 2014 Appl. Phys. Lett. 105 183902

    [26]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z D, Ji G W, Li J H, Yin G Z, Song F, Wang Z K, Li J Y, Gao X Y 2016 ACS Appl. Mater. Interfaces 8 14503

    [27]

    Wang Z K, Li M, Yang Y G, Ma H, Gao X Y, Liao L S 2016 Adv. Mater. 28 6695

    [28]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Jin Y, Liu Z, Sun B 2014 Nanoscale 6 10505

    [29]

    Yang Y G, Feng S L, Li M, Wu Z W, Fang X, Wang F, Geng D P, Yang T Y, Li X L, Sun B Q, Gao X Y 2015 ACS Appl. Mater. Interfaces 7 24430

  • [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K 2013 Nature 499 316

    [2]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 11 5615

    [3]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grötzel M 2013 Science 342 344

    [4]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [5]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S 2014 Science 345 542

    [6]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295

    [7]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Il Seol S 2014 Nat. Mater. 13 897

    [8]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [9]

    Niu G, Li W, Meng F 2014 J. Mater. Chem. A 2 705

    [10]

    Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S 2015 Adv. Funct. Mater. 25 6671

    [11]

    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J 2014 Adv. Mater. 26 6503

    [12]

    Toolan D T, Howse J R 2013 J. Mater. Chem. C 1 603

    [13]

    Chou K W, Yan B, Li R, Li E Q, Zhao K, Anjum D H 2013 Adv. Mater. 25 1923

    [14]

    Saliba M, Tan K W, Sai H, Moore D T, Scott T, Zhang W 2014 J. Phys. Chem. C 118 17171

    [15]

    Tan K W, Moore D T, Saliba M, Sai H, Estroff L A, Hanrath T 2014 ACS Nano 8 4730

    [16]

    Miyadera T, Shibatax Y, Koganezawa T, Murakami T N, Sugita T, Tanigaki N, Chikamatsu M 2015 Nano Lett. 15 5630

    [17]

    Yang J, Braden D S, Liu D, Kelly T L 2015 ACS Nano 9 1955

    [18]

    Li D, Simon A B, Victor W B, Ilka M H, Julian M, Alexander K, Lu H, Wolfgang T, Markus M, Hans-Jrgen B, Stefan A L W, Rdiger B 2016 J. Phys. Chem. C 120 6363

    [19]

    Barrows A T, Lilliu S, Pearson A J 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201601309

    [20]

    Wang D, Zhu H M, Zhou Z M, Wang Z W, L S L, Feng S P, Cui G L 2015 Acta Phys. Sin. 64 038403 (in Chinese)[王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊2015 64 038403]

    [21]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015 64 038404]

    [22]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese)[石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波2015 64 038402]

    [23]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513

    [24]

    Hu L, Shao G, Jiang T, Li D, L X, Wang H, Liu X, Song H, Tang J, Liu H 2015 ACS Appl. Mater. Interfaces 7 25113

    [25]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G 2014 Appl. Phys. Lett. 105 183902

    [26]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z D, Ji G W, Li J H, Yin G Z, Song F, Wang Z K, Li J Y, Gao X Y 2016 ACS Appl. Mater. Interfaces 8 14503

    [27]

    Wang Z K, Li M, Yang Y G, Ma H, Gao X Y, Liao L S 2016 Adv. Mater. 28 6695

    [28]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Jin Y, Liu Z, Sun B 2014 Nanoscale 6 10505

    [29]

    Yang Y G, Feng S L, Li M, Wu Z W, Fang X, Wang F, Geng D P, Yang T Y, Li X L, Sun B Q, Gao X Y 2015 ACS Appl. Mater. Interfaces 7 24430

  • [1] Yang Ying-Guo, Feng Shang-Lei, Li Li-Na. Solution slot-die coating perovskite film crystalline growth observed by in situ GIWAXS/GISAXS. Acta Physica Sinica, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [2] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Research on the fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [4] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive. Acta Physica Sinica, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [8] Sui Guo-Min, Yan Gui-Jun, Yang Guang, Zhang Bao, Feng Ya-Qing. Theoretical investigation on structure and optoelectronic performance of two-dimensional fluorbenzidine perovskites. Acta Physica Sinica, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [9] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] Adopting PEABr additive to obtain efficient and stable carbon-based CsPbBr3 solar cells. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211344
    [11] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [12] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [13] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [15] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  8500
  • PDF Downloads:  461
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2016
  • Accepted Date:  17 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map