Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rate-dependent characteristics of copper under plate impact

Peng Hui Li Ping Pei Xiao-Yang He Hong-Liang Cheng He-Ping Qi Mei-Lan

Citation:

Rate-dependent characteristics of copper under plate impact

Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the rate-dependent characteristics of oxygen-free high-purity copper (OFHC) under plate-impact loading is investigated experimentally. The velocity of flyers is measured by magnetic measurement system, and the free surface velocity of targets is measured by Doppler pins system (DPS). Characteristic parameters of free surface velocity are calculated using the measured data. Results show that the spall strength of OFHC is enhanced with the increase in strain rate. It is indicated that the rate from the minima to the spall peak grows slowly at low stain rate, but steeply at high strain rate. The slope as it appears, from the minima to the spall peak is very different as the strain rate increases, The interaction of shock waves in the copper samples is systematically analysed to access the slope characteristics.
    • Funds: Project supported by the Science Foundation of China Academy of Engineering Physics(Grant No.2011A0201002), and the National Natural Science Foundation of China (Grant Nos. 11202196, 11172221).
    [1]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [2]

    Lu K 2010 Science 328 319

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall fracture (New York: Springer) pp1-20

    [4]

    Chen Q Y, Liu K X 2011 Chin. Phys. Lett. 28 064602

    [5]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [6]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [7]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [8]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [9]

    Divakov A K, Mescheryakov Y I, Zhigacheva N I, Barakhtin B K, Gooch W A 2010 Phys. Mesomech. 13 113

    [10]

    Kanel G I, Baumung K, Singer J, Razorenov S V 2000 Appl. Phys. Lett. 76 3230

    [11]

    Wang Y, He H, Boustie M, Sekine T 2007 J. Appl. Phys. 101 103528

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Boyce B L, Clark B G, Lu P, Carroll J D, Weinberger C R 2013 Metall. Mater. Trans. A 44 4567

    [14]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201(in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [15]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scr. Mater. 63 1065

    [16]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528

    [17]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [18]

    Dalton D A, Brewer J L, Bernstein A C, Grigsby W, Milathianaki D, Jackson E D, Adams R G, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E M, Ditmire T 2008 J. Appl. Phys. 104 013526

    [19]

    Johnson J N, GrayⅢ G T, Bourne N K 1999 J. Appl. Phys. 86 4289

    [20]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502

    [21]

    Kanel G I, Razorenov S V, Baumung K, Singer J 2001 J. Appl. Phys. 90 136

    [22]

    Armstrong R W, Walley S M 2008 Int. Mater. Rev. 53 105

    [23]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35A 2587

    [24]

    Kanel G I, Razorenov S V, Utkin A V 1993 Dynamic Fracture and Fragmentation, High-Pressure Shock Compression of Solids Ⅱ, edited by Davison L, Grady D E, and Shahinpoor M (New York: Springer)

    [25]

    Minich R W, Cazamias J U, Kumar M, Schwartz A J 2004 Metall. Mater. Trans. A 35A 2663

    [26]

    Kanel G I, Razorenov S V, Bogatch A, Utkin A V, Gray D E 1997 Int. J. Impact Eng. 20 467

    [27]

    Escobedo J P, Dennis-Koller D, Cerreta E K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513

    [28]

    Cuq-Lelandais J P, Boustie M, Berthe L, de Rességuier T, Combis P, Colombier J P, Nivard M, Claverie A 2009 J. Phys. D: Appl. Phys. 42 065402

    [29]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, De Rességuier T, Combis P, Bontaz-Carion J, Lescoute E 2011 EPJ Web of Conferences 10 00014

    [30]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

  • [1]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [2]

    Lu K 2010 Science 328 319

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall fracture (New York: Springer) pp1-20

    [4]

    Chen Q Y, Liu K X 2011 Chin. Phys. Lett. 28 064602

    [5]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [6]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [7]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [8]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [9]

    Divakov A K, Mescheryakov Y I, Zhigacheva N I, Barakhtin B K, Gooch W A 2010 Phys. Mesomech. 13 113

    [10]

    Kanel G I, Baumung K, Singer J, Razorenov S V 2000 Appl. Phys. Lett. 76 3230

    [11]

    Wang Y, He H, Boustie M, Sekine T 2007 J. Appl. Phys. 101 103528

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Boyce B L, Clark B G, Lu P, Carroll J D, Weinberger C R 2013 Metall. Mater. Trans. A 44 4567

    [14]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201(in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [15]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scr. Mater. 63 1065

    [16]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528

    [17]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [18]

    Dalton D A, Brewer J L, Bernstein A C, Grigsby W, Milathianaki D, Jackson E D, Adams R G, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E M, Ditmire T 2008 J. Appl. Phys. 104 013526

    [19]

    Johnson J N, GrayⅢ G T, Bourne N K 1999 J. Appl. Phys. 86 4289

    [20]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502

    [21]

    Kanel G I, Razorenov S V, Baumung K, Singer J 2001 J. Appl. Phys. 90 136

    [22]

    Armstrong R W, Walley S M 2008 Int. Mater. Rev. 53 105

    [23]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35A 2587

    [24]

    Kanel G I, Razorenov S V, Utkin A V 1993 Dynamic Fracture and Fragmentation, High-Pressure Shock Compression of Solids Ⅱ, edited by Davison L, Grady D E, and Shahinpoor M (New York: Springer)

    [25]

    Minich R W, Cazamias J U, Kumar M, Schwartz A J 2004 Metall. Mater. Trans. A 35A 2663

    [26]

    Kanel G I, Razorenov S V, Bogatch A, Utkin A V, Gray D E 1997 Int. J. Impact Eng. 20 467

    [27]

    Escobedo J P, Dennis-Koller D, Cerreta E K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513

    [28]

    Cuq-Lelandais J P, Boustie M, Berthe L, de Rességuier T, Combis P, Colombier J P, Nivard M, Claverie A 2009 J. Phys. D: Appl. Phys. 42 065402

    [29]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, De Rességuier T, Combis P, Bontaz-Carion J, Lescoute E 2011 EPJ Web of Conferences 10 00014

    [30]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

  • [1] Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia. Law and mechanism of impact velocity on spalling and fracture behavior of single crystal nickel. Acta Physica Sinica, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [2] Zhang Feng-Guo, Zhao Fu-Qi, Liu Jun, He An-Min, Wang Pei. Dependence of spallstrength on temperature, grain size and strain rate in pure ductile metals. Acta Physica Sinica, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [3] Spall strength dependence on temperature, grain size and strain rate in pure ductile metals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210702
    [4] Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [5] Xie Pu-Chu, Wang Xiao-Song, Hu Chang-Ming, Hu Jian-Bo, Zhang Feng-Guo, Wang Yong-Gang. Incipient spallation of high purity copper under non-one-dimensional strain shock waves. Acta Physica Sinica, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [6] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [7] Xi Tao, Fan Wei, Chu Gen-Bai, Shui Min, He Wei-Hua, Zhao Yong-Qiang, Xin Jian-Ting, Gu Yu-Qiu. Spall behavior of copper under ultra-high strain rate loading. Acta Physica Sinica, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [8] Peng Hui, Pei Xiao-Yang, Li Ping, He Hong-Liang, Bai Jin-Song. Micro-damage characteristics of incipient spall in high-purity copper. Acta Physica Sinica, 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [9] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Study on the effect of peak stress on dynamic damage evolution of high pure copper. Acta Physica Sinica, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [10] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Discussion on the physical meaning of free surface velocity curve in ductile spallation. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [11] Zhou Nan, Chen Shuo. The study of fluid with free surface by many-body dissipative particle dynamics. Acta Physica Sinica, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [12] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] Zhang Feng-Guo, Zhou Hong-Qiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall. Acta Physica Sinica, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [14] Chen Yong-Tao, Tang Xiao-Jun, Li Qing-Zhong. Phase transition and influence of phase transitionon spall in α phase Fe-based alloy. Acta Physica Sinica, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [15] Wang Yong-Gang, Hu Jian-Dong, Qi Mei-Lan, He Hong-Liang. Simulation of incipient spallation experiments of high purity aluminum based on a single void growth model. Acta Physica Sinica, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [16] Chen Da-Nian, Fan Chun-Lei, Hu Jin-Wei, Tan Hua, Wang Huan-Ran, Wu Shan-Xing, Yu Yu-Ying. On constitutive models of oxygen-free high-conductivity copper at high pressure and high strain rates. Acta Physica Sinica, 2009, 58(4): 2612-2618. doi: 10.7498/aps.58.2612
    [17] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [18] Wang Yong-Gang, He Hong-Liang, Boustie Michel, Sekine Toshimori. Experimental studies of spallation in nanocrystalline copper film by laser irradiation. Acta Physica Sinica, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [19] Wang Yong-Gang, Chen Deng-Ping, He Hong-Liang, Wang Li-Li, Jing Fu-Qian. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading. Acta Physica Sinica, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [20] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
Metrics
  • Abstract views:  5648
  • PDF Downloads:  407
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2014
  • Accepted Date:  02 July 2014
  • Published Online:  05 October 2014

/

返回文章
返回
Baidu
map