搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非一维应变冲击加载下高纯铜初始层裂行为

谢普初 汪小松 胡昌明 胡建波 张凤国 王永刚

引用本文:
Citation:

非一维应变冲击加载下高纯铜初始层裂行为

谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚

Incipient spallation of high purity copper under non-one-dimensional strain shock waves

Xie Pu-Chu, Wang Xiao-Song, Hu Chang-Ming, Hu Jian-Bo, Zhang Feng-Guo, Wang Yong-Gang
PDF
HTML
导出引用
  • 提出了一种锥形靶层裂实验新方法, 开展非一维应变冲击条件下高纯铜初始层裂行为实验研究, 讨论了锥形靶内部损伤分布特征及其与自由面速度典型特征之间的内禀关系. 结果显示: 1)初始层裂的锥形靶内部出现了连续损伤区, 损伤区扩展方向与锥面平行, 从锥底到锥顶呈现了不同的损伤状态, 从微孔洞独立长大到局部聚集, 最后形成宏观裂纹, 这种损伤状态分布特征归因于锥形靶内部拉伸应力幅值和持续时间的空间演化; 2)通过锥形靶横截面损伤度定量统计分析, 揭示损伤演化早期的微孔洞成核与早期长大过程是随机的, 而损伤演化后期的微孔洞聚集过程具有显著的局域化特征; 3)不同位置处实测的自由面法向粒子速度剖面呈现出典型的层裂Pull-back信号, 但是通过与内部损伤分布特征对比, 揭示基于Pull-back速度获得高纯铜层裂强度本质是微孔洞成核阈值应力, Pull-back回跳速度斜率反映了损伤演化速率, Pull-back回跳幅值与损伤度引起的应力松弛密切相关.
    A new spallation experimental method by using conical target is proposed. Based on the analysis of wave propagation, the basic principle of spallation experiment of conical target is discussed. Then incipient spallation of high purity (HP) copper under non-one-dimensional strain shock wave is studied experimentally by using a gas gun setup. The damage distribution characteristics and micro-mechanism of conical HP copper target are analyzed. The intrinsic relationship between the characteristics of free surface velocity profiles and damage evolution is explored. The results indicate that 1) continuous damage zones including different damage states appear in the conical HP copper target with initial spallation from the bottom of cone to the top of cone along the direction parallel to the cone surface, which is attributed to the spatial evolution of the amplitude and duration time of tensile stress in the conical target; 2) quantitative statistical analysis of damage inside conical HP copper target reveals that the nucleation and early growth of micro-voids are random, while the coalescence of micro-voids has significant localization characteristics; 3) the normal free surface particle velocity profiles with typical pull-back spallation signals at different locations of conical HP copper target are measured by multi-channel photon Doppler velocimetry. Comparing with the damage distribution characteristics, it is revealed that the spallation strength based on pull-back velocity is independent of damage, and is the critical nucleation stress of micro-voids. But the slope and amplitude of pull-back rebound velocity depend on damage evolution process, which relates to the change of damage evolution rate and stress relaxation caused by damage degree respectively.
      通信作者: 王永刚, wangyonggang@nbu.edu.cn
    • 基金项目: 国防基础科研科学挑战专题(批准号: TZ2018001)和国家自然科学基金(批准号: 11972202)资助的课题
      Corresponding author: Wang Yong-Gang, wangyonggang@nbu.edu.cn
    • Funds: Project supported by National Defense Basic Scientific Science Challenge Project of China(Grant No. TZ2018001) and the National Natural Science Foundation of China (Grant No. 11202196)
    [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [3]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [5]

    彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松 2015 64 216201Google Scholar

    Peng H, Pei X Y, Li P, He H L, Bai J S 2015 Acta Phys. Sin. 64 216201Google Scholar

    [6]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [7]

    席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋 2017 66 040202Google Scholar

    Xi T, Fan W, Chu G B, Shui M, He W H, Zhao Y Q, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 040202Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Li C, Li B, Huang J Y, Ma H H, Zhu J, Luo S N 2016 Mater. Sci. Eng. A 660 139Google Scholar

    [10]

    Escobedo J. P, Dennis-Koller D, CerretaE K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [11]

    Fensin S J, Escobedo J P, Gray G T, Patterson B M, Trujillo C P, Cerreta E K 2014 J. Appl. Phys. 115 203516Google Scholar

    [12]

    Moore J A, Li SF, Rhee M, Barton N R 2018 J. Dyn. Behav. Mater. 4 464Google Scholar

    [13]

    张凤国, 周洪强, 张广财, 洪滔 2011 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [14]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [16]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [17]

    李雪梅, 汪小松, 王鹏来, 卢敏, 贾路峰 2009 爆炸与冲击 29 162Google Scholar

    Li X M, Wang X S, Wang P L, Lu M, Jia L F 2009 Explosion and Shock Waves 29 162Google Scholar

    [18]

    Yang Y, Chen J X, Peng Z Q, Guo Z L, Tang T G, Hu H B, Hu Y N 2016 Mater. Sci. Eng. A 667 54

    [19]

    Johnson G R, Cook W H 1983 Proceedings of the Seventh International Symposium on Ballistics Den Haag, The Netherlands 1983 p541

    [20]

    裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)

    Pei X Y 2013 Ph. Dissertation (MianYang: China Academy of Engineering Physics) (in Chinese)

    [21]

    Seaman L, Curran D R, Crewdson R C 1978 J. Appl. Phys. 49 5221Google Scholar

    [22]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [23]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [24]

    Rybakov A P 2000 Int. J. Impact Eng. 24 1041Google Scholar

    [25]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [26]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 64 034601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601Google Scholar

    [27]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

  • 图 1  平板飞片撞击锥形靶实验中x-y-t波系相互作用示意图

    Fig. 1.  Schematic diagram of x-y-t wave interactions in the experiment of flat flyer impacting conical target.

    图 2  锥形靶层裂实验装置示意图

    Fig. 2.  Schematic diagram of conical target experiment.

    图 3  高纯铜样品微观结构EBSD表征照片

    Fig. 3.  Microstructure image of high-purity spallation copper by using EBSD.

    图 4  软回收的锥形靶样品图

    Fig. 4.  Soft-recovered conical copper target.

    图 5  锥形靶内部微损伤分布特征光学显微照片

    Fig. 5.  Optical micrograph of micro-damage distribution in the conical copper target.

    图 6  锥形靶内4个典型区域的微损伤分布光学显微照片 (a)区域a; (b)区域b; (c)区域c; (d)区域d

    Fig. 6.  Optical micrographs of micro-damage distribution in four typical regions of the conical target: (a) Region a; (b) region b; (c) region c; (d) region d.

    图 7  平板撞击锥形靶轴对称二维有限元计算模型及4个典型区域中心单元应力时程曲线 (a)有限元计算模型; (b)应力时程曲线

    Fig. 7.  Two-dimensional axial symmetric finite element method model of conical target impacted by planar impactor and stress profiles of central element in four typical regions: (a) Finite element method model; (b) stress profiles.

    图 8  锥形靶内4个典型位置处沿x方向的损伤度统计结果

    Fig. 8.  Damage distribution along the x direction in four typical regions of the conical target.

    图 9  锥形靶内沿着y方向微损伤分布的光学显微照片 (a)区域e; (b)区域f

    Fig. 9.  Optical micrographs of micro-damage distribution along y direction in the conical target: (a) Region e; (b) region f.

    图 10  锥形靶内沿y方向的损伤度定量统计分布

    Fig. 10.  Damage distribution along the y direction in the conical copper target

    图 11  不同损伤阶段横截面损伤分布的EBSD表征 (a)微孔洞长大; (b)微孔洞聚集

    Fig. 11.  EBSD orientation maps of cross section damage at different damage stages: (a) Microvoid growth; (b) microvoid coalescence.

    图 12  原始态和冲击态高纯铜晶粒尺寸分布对比 (a)原始态; (b)冲击态

    Fig. 12.  Comparison of grain size distributions of the high-purity copper in cross section: (a) Original; (b) shock compressed.

    图 13  锥形靶3个测点处的自由面速度时程曲线

    Fig. 13.  Free surface velocity profiles measured from different points of conical target.

    表 1  三个测点的自由面速度参数

    Table 1.  Free surface velocity parameters measured from different points of conical target

    编号Δu1/m·s–1${\sigma _{{\rm{spall}}}}$/GPaΔu2/m·s–1$\dot \varepsilon $/104s–1${\dot u_{{\rm{f}}2}}$/107m·s–2
    测点157.761.3421.841.344.34
    测点255.851.3114.801.336.67
    测点361.111.3213.051.317.08
    下载: 导出CSV
    Baidu
  • [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [3]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [5]

    彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松 2015 64 216201Google Scholar

    Peng H, Pei X Y, Li P, He H L, Bai J S 2015 Acta Phys. Sin. 64 216201Google Scholar

    [6]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [7]

    席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋 2017 66 040202Google Scholar

    Xi T, Fan W, Chu G B, Shui M, He W H, Zhao Y Q, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 040202Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Li C, Li B, Huang J Y, Ma H H, Zhu J, Luo S N 2016 Mater. Sci. Eng. A 660 139Google Scholar

    [10]

    Escobedo J. P, Dennis-Koller D, CerretaE K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [11]

    Fensin S J, Escobedo J P, Gray G T, Patterson B M, Trujillo C P, Cerreta E K 2014 J. Appl. Phys. 115 203516Google Scholar

    [12]

    Moore J A, Li SF, Rhee M, Barton N R 2018 J. Dyn. Behav. Mater. 4 464Google Scholar

    [13]

    张凤国, 周洪强, 张广财, 洪滔 2011 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [14]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [16]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [17]

    李雪梅, 汪小松, 王鹏来, 卢敏, 贾路峰 2009 爆炸与冲击 29 162Google Scholar

    Li X M, Wang X S, Wang P L, Lu M, Jia L F 2009 Explosion and Shock Waves 29 162Google Scholar

    [18]

    Yang Y, Chen J X, Peng Z Q, Guo Z L, Tang T G, Hu H B, Hu Y N 2016 Mater. Sci. Eng. A 667 54

    [19]

    Johnson G R, Cook W H 1983 Proceedings of the Seventh International Symposium on Ballistics Den Haag, The Netherlands 1983 p541

    [20]

    裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)

    Pei X Y 2013 Ph. Dissertation (MianYang: China Academy of Engineering Physics) (in Chinese)

    [21]

    Seaman L, Curran D R, Crewdson R C 1978 J. Appl. Phys. 49 5221Google Scholar

    [22]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [23]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [24]

    Rybakov A P 2000 Int. J. Impact Eng. 24 1041Google Scholar

    [25]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [26]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 64 034601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601Google Scholar

    [27]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

  • [1] 王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞. 冲击速度对单晶镍层裂行为的影响规律及作用机制.  , 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [2] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算.  , 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [3] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射.  , 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [4] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [5] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究.  , 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [6] 张凤国, 刘军, 何安民, 王裴, 王昆, 周洪强, 赵福祺. 层裂损伤孔洞增长模型参数的确定方法及其应用.  , 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [7] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读.  , 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [8] 彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松. 高纯铜初始层裂的微损伤特性研究.  , 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [9] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟.  , 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [10] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 平面冲击下铜的拉伸应变率相关特性研究.  , 2014, 63(19): 196202. doi: 10.7498/aps.63.196202
    [11] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究.  , 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [12] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响.  , 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [13] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 动态损伤演化的空间不连续性实验研究.  , 2013, 62(22): 226201. doi: 10.7498/aps.62.226201
    [14] 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷的层裂强度及冲击压缩损伤机理研究.  , 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [15] 张凤国, 周洪强, 张广财, 洪滔. 惯性及弹塑性效应对延性金属材料层裂损伤的影响.  , 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [16] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析.  , 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [17] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化.  , 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [18] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究.  , 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [19] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响.  , 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [20] 丘锡钧. 伴有靶核核心激发的氘核削裂反应.  , 1965, 21(1): 208-217. doi: 10.7498/aps.21.208
计量
  • 文章访问数:  7943
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-10-22
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map