Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discussion on the application of entransy theory to heat-work conversion processes

Cheng Xue-Tao Liang Xin-Gang

Citation:

Discussion on the application of entransy theory to heat-work conversion processes

Cheng Xue-Tao, Liang Xin-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Applications and limitations of the entransy theory for heat-work conversion processes are analyzed and discussed in this paper. Our analyses for the Carnot cycle show that the system entransy of the Carnot cycle is in balance, but the relationship, dG=T2dS, does not exsit between the concepts of entransy and entropy. Therefore, the concept of entropy cannot be replaced by the concept of entransy. For common thermodynamic processes, the analyses show that the present entransy theory is applicable when heat is transferred into an endoreversible thermodynamic cycle to do work. In addition, in the analyses of heat-work conversion processes, the differences between the entransy theory and entropy theory are also discussed. It is shown that the viewpoints and preconditions of the two theories for the analyses and optimizations of heat-work conversion processes are different. The viewpoint of the analyses of entropy generation is the loss of exergy, while that of the analyses of entransy is the consumption of thermal potential. When the input exergy flow of the discussed system is prescribed or the input heat flow and the corresponding thermodynamic forces of the heat flows into and out of the system are prescribed, the entropy generation minimization leads to the maximum output work. For the entransy theory, the maximum entransy loss corresponds to the maximum output work when the input heat flow and the corresponding temperatures of the heat flows into and out of the system are prescribed. Meanwhile, they both have limitations. When the corresponding preconditions are not satisfied, the maximum entransy loss or the minimum entropy generation may not correspond to the maximum output work.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51376101).
    [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [3]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 847

    [4]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [5]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512(in Chinese) [程雪涛, 梁新刚, 徐向华 2011 60 060512]

    [6]

    Xie Z H, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 4418

    [7]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103(in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [8]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [9]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703(in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [10]

    Cheng X T, Xu X H, Liang X G 2011 Sci China: Tech Sci. 54 2446

    [11]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [12]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [13]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [14]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [15]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [16]

    Cheng X T, Liang X G 2012 Energy 46 386

    [17]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [18]

    Qian X D, Li Z X 2011 Int. J. Thermal Sci. 50 608

    [19]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3572

    [20]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [21]

    Wang W H, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 529

    [22]

    Chen L, Chen Q, Li Z, Guo Z Y 2009 Int. J. Heat Mass Transfer 52 4778

    [23]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [24]

    Xia S J, Chen L G, Sun F R 2012 Sci. Iranica, Tran. C-Chemistry Chem. Eng. 19 1616

    [25]

    Wei S H, Chen L G, Sun F R 2011 Int. J. Thermal Sci. 50 1285

    [26]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E: Tech. Sci. 52 2937

    [27]

    Feng H, Chen L, Sun F 2012 Sci. China: Tech. Sci. 55 779

    [28]

    Feng H, Chen L, Xie Z, Sun F 2013 Sci. China: Tech. Sci. 56 299

    [29]

    Xu M T 2011 Energy 36 4272

    [30]

    Cheng X T, Liang X G 2012 Energy 44 964

    [31]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [32]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 57 2934

    [33]

    Cheng X T, Liang X G 2012 Energy 47 421

    [34]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [35]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [36]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

    [37]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-Equilibrium Thermodynamics 38 250

    [38]

    Cheng X T, Chen Q, Hu G J, Liang X G 2013 Int. J. Heat Mass Transfer 60 180

    [39]

    Guo Z Y 2014 Energy 68 998

    [40]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China Tech. Sci. 55 2847

    [41]

    Cheng X T, Liang X G 2013 Energy 56 46

    [42]

    Cheng X T, Liang X G 2013 J. Thermal Sci. Tech. 8 337

    [43]

    Cheng X T, Liang X G 2014 Int Commun Heat Mass Transfer 53 9

    [44]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [45]

    Cheng X T, Liang X G 2014 Energy Convers. Manage. 80 238

    [46]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [47]

    Yang A, Chen L G, Xia S J, Sun F R 2014 Chin. Sci. Bull. 59 2031

    [48]

    Cheng X T, Liang X G 2013 Sci. China Tech. Sci. 43 943(in Chinese) [程雪涛, 梁新刚 2013 中国科学: 技术科学 43 943]

    [49]

    Ge Y L, Chen L G, Sun F R 2012 J. Energy Insitute. 85 140

    [50]

    Chen L G, Xia S J, Sun F R 2009 J Appl. Physics 105 044907

    [51]

    Chen L G, Zhang W L, Sun F R 2007 Appl. Energy 84 512

    [52]

    Cheng X T, Liang X G 2013 Energy Convers. Manage. 73 121

  • [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [3]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 847

    [4]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [5]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512(in Chinese) [程雪涛, 梁新刚, 徐向华 2011 60 060512]

    [6]

    Xie Z H, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 4418

    [7]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103(in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [8]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [9]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703(in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [10]

    Cheng X T, Xu X H, Liang X G 2011 Sci China: Tech Sci. 54 2446

    [11]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [12]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [13]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [14]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [15]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [16]

    Cheng X T, Liang X G 2012 Energy 46 386

    [17]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [18]

    Qian X D, Li Z X 2011 Int. J. Thermal Sci. 50 608

    [19]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3572

    [20]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [21]

    Wang W H, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 529

    [22]

    Chen L, Chen Q, Li Z, Guo Z Y 2009 Int. J. Heat Mass Transfer 52 4778

    [23]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [24]

    Xia S J, Chen L G, Sun F R 2012 Sci. Iranica, Tran. C-Chemistry Chem. Eng. 19 1616

    [25]

    Wei S H, Chen L G, Sun F R 2011 Int. J. Thermal Sci. 50 1285

    [26]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E: Tech. Sci. 52 2937

    [27]

    Feng H, Chen L, Sun F 2012 Sci. China: Tech. Sci. 55 779

    [28]

    Feng H, Chen L, Xie Z, Sun F 2013 Sci. China: Tech. Sci. 56 299

    [29]

    Xu M T 2011 Energy 36 4272

    [30]

    Cheng X T, Liang X G 2012 Energy 44 964

    [31]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [32]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 57 2934

    [33]

    Cheng X T, Liang X G 2012 Energy 47 421

    [34]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [35]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [36]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

    [37]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-Equilibrium Thermodynamics 38 250

    [38]

    Cheng X T, Chen Q, Hu G J, Liang X G 2013 Int. J. Heat Mass Transfer 60 180

    [39]

    Guo Z Y 2014 Energy 68 998

    [40]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China Tech. Sci. 55 2847

    [41]

    Cheng X T, Liang X G 2013 Energy 56 46

    [42]

    Cheng X T, Liang X G 2013 J. Thermal Sci. Tech. 8 337

    [43]

    Cheng X T, Liang X G 2014 Int Commun Heat Mass Transfer 53 9

    [44]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [45]

    Cheng X T, Liang X G 2014 Energy Convers. Manage. 80 238

    [46]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [47]

    Yang A, Chen L G, Xia S J, Sun F R 2014 Chin. Sci. Bull. 59 2031

    [48]

    Cheng X T, Liang X G 2013 Sci. China Tech. Sci. 43 943(in Chinese) [程雪涛, 梁新刚 2013 中国科学: 技术科学 43 943]

    [49]

    Ge Y L, Chen L G, Sun F R 2012 J. Energy Insitute. 85 140

    [50]

    Chen L G, Xia S J, Sun F R 2009 J Appl. Physics 105 044907

    [51]

    Chen L G, Zhang W L, Sun F R 2007 Appl. Energy 84 512

    [52]

    Cheng X T, Liang X G 2013 Energy Convers. Manage. 73 121

  • [1] He Hai, Yang Peng-Fei, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Birefringence compensation utilizing quarter-wave plates in cavity-enhanced spontaneous parametric down-conversion process. Acta Physica Sinica, 2023, 72(12): 124203. doi: 10.7498/aps.72.20230422
    [2] Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui. Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization. Acta Physica Sinica, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [3] Yang Ke-Li. Synchronization transition with coexistence of attractors in coupled discontinuous system. Acta Physica Sinica, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [4] Shu An-Qing, Wu Feng. Optimization of the performance of quantum thermoacoustic micro-cycle. Acta Physica Sinica, 2016, 65(16): 164303. doi: 10.7498/aps.65.164303
    [5] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Experimental study on + shaped high conductivity constructal channels based on entransy theory. Acta Physica Sinica, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [6] Cheng Xue-Tao, Liang Xin-Gang. Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heat-work conversion. Acta Physica Sinica, 2016, 65(18): 180503. doi: 10.7498/aps.65.180503
    [7] Yu Yong-Ji, Chen Xin-Yu, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Experimental study of multiple optical parametric oscillator based on MgO:APLN and its evolution analysis of back conversion. Acta Physica Sinica, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [8] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] Wang Huan-Guang, Wu Di, Rao Zhong-Hao. Analytical solution of the entransy dissipation of heat conduction process in isolated system. Acta Physica Sinica, 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [11] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [12] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [13] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [14] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [15] Zhao Tian, Chen Qun. Macroscopic physical meaning of entransy and its application. Acta Physica Sinica, 2013, 62(23): 234401. doi: 10.7498/aps.62.234401
    [16] Dong Yuan, Guo Zeng-Yuan. The modification of entropy production by heat condution in non-equilibrium thermodynamics. Acta Physica Sinica, 2012, 61(3): 030507. doi: 10.7498/aps.61.030507
    [17] Cheng Xue-Tao, Liang Xin-Gang, Xu Xiang-Hua. Microscopic expression of entransy. Acta Physica Sinica, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [18] Liu Xiong-Bin, Guo Zeng-Yuan. A novel method for heat exchanger analysis. Acta Physica Sinica, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [20] Wang Zhen-Xia, Wang Sen, Hu Jian-Gang, Yu Guo-Jun. Preliminary structural study of multi-wall carbon nanotubes in a returning phase transition process. Acta Physica Sinica, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
Metrics
  • Abstract views:  6274
  • PDF Downloads:  438
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2014
  • Accepted Date:  06 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回
Baidu
map