搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较

王刚 谢志辉 范旭东 陈林根 孙丰瑞

引用本文:
Citation:

离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较

王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞

Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization

Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui
PDF
导出引用
  • 建立了导热基座上圆柱体离散发热器件的三维湍流散热模型,基于构形理论,考虑空气变物性及可压缩性和黏性耗散,研究了器件材料的热导率、热源强度和流体流速对器件最高温度、基于(火积)耗散定义的当量热阻和平均Nu数的影响.结果表明:在总发热功率一定的条件下,以器件最高温度和当量热阻为性能指标进行热设计,均存在最优热源强度分布使得散热性能最优.当各热源强度相同且热源热导率小于基座热导率时,提高热源热导率可明显改善散热性能;将热源热导率沿流动方向从低到高布置可降低器件最高温度,而将热源热导率均匀布置可使当量热阻最小.所得结果可为实际热设计中不同材质和不同发热率的电子器件最优布置提供理论支撑.
    A three-dimensional (3D) turbulent heat dissipation model of cylindrical discrete heat generation components is established on a conductive basis. The whole solid section is set in a square channel with adiabatic walls, and the components, cooled by clean air flowing through the channel, are arranged in a line with equal spacings. The influences of the heat conductivities of the components, intensities of heat sources and velocity of fluid flow on the maximum temperature (MT) of components, the equivalent thermal resistance (ETR) based on entransy dissipation of the heat dissipation system, and the averaged Nu number are investigated with the constructal theory considering variable properties, compressibility and viscous dissipation of air. The total heat generation rate and the total heat conductivity of heat sources are fixed as the constraint conditions. The circumstances in which heat generation rates and heat conductivities of heat sources are unequal are considered. The results show that for the fixed total heat generation rate of heat sources, despite MT or ETR that is taken as the performance index for thermal design, there exists an optimal intensity distribution of heat sources for the best thermal performance of the system. In fact, for different objectives, the optimal intensity distributions of heat sources are corresponding to the best match between the distributions of heat sources and the distributions of temperature gradient. There are different optimal distributions for different velocities of the fluid flow and different optimization objectives. Besides, the averaged Nu number increases with the increase of intensity difference in heat sources, which means that the convective heat transfer is enhanced, but this phenomenon is relatively weak when the velocity of fluid flow is low. For the fixed total heat generation rate of heat sources, when the intensities of heat sources are equal and the thermal conductivities of heat sources are lower than that of the conductive basis, increasing heat conductivities of the heat sources can evidently improve thermal performance of the system; the MT can be lowest when the conductivities of heat sources increase along the fluid flow; and the ETR is lowest when the conductivities of heat sources are equal. Both the MT and the ETR decrease with the increasing velocity of fluid flow. The results can provide some theoretical guidelines for the practical thermal design of the electronic components with different materials and different heat generation rates.
      通信作者: 陈林根, lingenchen@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:51579244,51206184)和海军工程大学自主立项课题(批准号:20160134)资助的课题.
      Corresponding author: Chen Lin-Gen, lingenchen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51206184) and the Independent Project of Naval University of Engineering (Grant No. 20160134).
    [1]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transfer 41 2221

    [2]

    Tao W Q, Guo Z Y, Wang B X 2002 Int. J. Heat Mass Transfer 45 3849

    [3]

    Xuan Y M 2014 Sci. China Tech. Sci. 44 269 (in Chinese)[宣益民2014中国科学:技术科学44 269]

    [4]

    Chen L G, Meng F K, Sun F R 2016 Sci. China Tech. Sci. 59 442

    [5]

    Chen Y P, Yao F, Shi M H 2012 Int. J. Heat Mass Transfer 55 4476

    [6]

    Xie G N, Liu J, Liu Y Q, Sunden B, Zhang W H 2013 Trans. ASME J. Electron. Packag. 135 021008

    [7]

    Zhao D L, Tan G 2014 Appl. Thermal Eng. 66 15

    [8]

    Kang N, Wu H Y, Xu F Y 2015 J. Engng. Thermophys. 36 1572 (in Chinese)[康宁, 吴慧英, 徐发尧2015工程热 36 1572]

    [9]

    Green C, Kottke P, Han X F, Woodrum C, Sarvey T, Asrar P, Zhang X C, Joshi Y, Fedorov A, Sitaraman S, Bakir M 2015 J. Electron. Packag. 137 040802

    [10]

    Luo X B, Hu R, Liu S, Wang K 2016 Prog. Energ. Combust. Sci. 56 1

    [11]

    Chen K, Wang S F, Song M X 2016 Int. J. Heat Mass Transfer 93 108

    [12]

    Zhang X C, Han X F, Sarvey T E, Green C E, Kottke P A, Fedorov A G, Joshi Y, Bakir M S 2016 J. Electron. Packag. 138 010910

    [13]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [14]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge:Cambridge University Press) pp1-314

    [15]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey:Wiley) pp1-62

    [16]

    Chen L G, Feng H J 2016 Multi-objective Constructal Optimization for Flow and Heat and Mass Transfer Processes (Beijing:Science Press) pp1-23(in Chinese)[陈林根, 冯辉君2016流动和传热传质过程的多目标构形优化(北京:科学出版社)第123页]

    [17]

    Bejan A 2016 The Physics of Life:The Evolution of Everything (New York:St. Martin' s Press) pp1-27

    [18]

    Chen L G 2012 Sci. China Tech. Sci. 55 802

    [19]

    Bejan A, Errera M R 2016 J. Appl. Phys. 119 074901

    [20]

    Bejan A, Fowler A J, Stanescu G 1995 Int. J. Heat Mass Transfer 38 2047

    [21]

    Stanescu G, Fowler A J, Bejan A 1996 Int. J. Heat Mass Transfer 39 311

    [22]

    Jassim E, Muzychka Y S 2010 J. Heat Transfer 132 011701

    [23]

    Hajmohammadi M R, Poozesh S, Nourazar S S 2012 Proc. IMechE Part E J. Process Mech. Eng. 226 324

    [24]

    Hajmohammadi M R, Poozesh S, Nourazar S S, Manesh A H 2013 Mech. Sci. Tech. 27 1143

    [25]

    Pedrotti V A, Souza J A, Isoldi J A, dos Santos E D, Isoldi L A 2015 Engenharia Termica ( Thermal Engineering) 14 16

    [26]

    Shi Z Y, Dong T 2015 Energ. Convers. Manage. 106 300

    [27]

    Singh D K, Singh S N 2015 Int. J. Heat Mass Transfer 89 444

    [28]

    Fan X D, Xie Z H, Sun F R, Yang A B 2016 J. Eng. Therm. 37 1994 (in Chinese)[范旭东, 谢志辉, 孙丰瑞, 杨爱波2016工程热 37 1994]

    [29]

    Fan X D 2015 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[范旭东2015硕士学位论文(武汉:海军工程大学)]

    [30]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2015 Int. Commun. Heat Mass Transfer 68 1

    [31]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2014 Chinese Sci. Bull. 59 3609 (in Chinese)[龚舒文, 陈林根, 冯辉君, 谢志辉, 孙丰瑞2014科学通报59 3609]

    [32]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2016 Sci. China Tech. Sci. 59 631

    [33]

    Gong S W 2014 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[龚舒文2014硕士学位论文(武汉:海军工程大学)]

    [34]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [35]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing:Science Press) pp78-97(in Chinese)[李志信, 过增元2010对流传热优化的场协同理论(北京:科学出版社)第7897页]

    [36]

    Chen L G 2012 Chinese Sci. Bull. 57 4404

    [37]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [38]

    Cheng X T, Liang X G 2014 Chinese Sci. Bull. 59 5309

    [39]

    Chen L G 2014 Sci China Tech. Sci. 57 2305

    [40]

    Cheng X T, Liang X G, Guo Z Y 2011 Chinese Sci. Bull. 56 847

    [41]

    Hu G J, Cao B Y, Guo Z Y 2011 Chinese Sci. Bull. 56 2974

    [42]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [43]

    Zhao T, Chen Q 2013 Acta Phys. Sin. 62 234401 (in Chinese)[赵甜, 陈群2013 62 234401]

    [44]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese)[程雪涛, 梁新刚2014 63 190501]

    [45]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [46]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩2015 64 244401]

    [47]

    Chen G M, Tso C P 2012 Int. J. Heat Mass Transfer 55 3744

    [48]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [49]

    Wu J, Cheng X 2013 Int. J. Heat Mass Transfer 58 374

    [50]

    Yuan F, Chen Q 2012 Chinese Sci. Bull. 57 687

    [51]

    Zheng Z J, He Y L, Li Y S 2014 Sci. China Tech. Sci. 57 773

    [52]

    Xia S J, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 3587

    [53]

    Guo J F, Huai X L, Li X F, Cai J, Wang Y W 2013 Energy 63 95

    [54]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E Tech. Sci. 51 1283

    [55]

    Chen L G, Feng H J, Xie Z H 2016 Entropy 18 353

    [56]

    Chen L G, Yang A B, Xie Z H, Feng H J, Sun F R 2017 Int. J. Therm. Sci. 111 168

    [57]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 3504

    [58]

    Xie Z H, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 4418

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2016 J. Energy Inst. 89 302

    [60]

    COMSOL 2012 COMSOL Multiphysics User' s Guide (Version 4.3b) (Sweden:COMSOL Incorporated) pp103-147

  • [1]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transfer 41 2221

    [2]

    Tao W Q, Guo Z Y, Wang B X 2002 Int. J. Heat Mass Transfer 45 3849

    [3]

    Xuan Y M 2014 Sci. China Tech. Sci. 44 269 (in Chinese)[宣益民2014中国科学:技术科学44 269]

    [4]

    Chen L G, Meng F K, Sun F R 2016 Sci. China Tech. Sci. 59 442

    [5]

    Chen Y P, Yao F, Shi M H 2012 Int. J. Heat Mass Transfer 55 4476

    [6]

    Xie G N, Liu J, Liu Y Q, Sunden B, Zhang W H 2013 Trans. ASME J. Electron. Packag. 135 021008

    [7]

    Zhao D L, Tan G 2014 Appl. Thermal Eng. 66 15

    [8]

    Kang N, Wu H Y, Xu F Y 2015 J. Engng. Thermophys. 36 1572 (in Chinese)[康宁, 吴慧英, 徐发尧2015工程热 36 1572]

    [9]

    Green C, Kottke P, Han X F, Woodrum C, Sarvey T, Asrar P, Zhang X C, Joshi Y, Fedorov A, Sitaraman S, Bakir M 2015 J. Electron. Packag. 137 040802

    [10]

    Luo X B, Hu R, Liu S, Wang K 2016 Prog. Energ. Combust. Sci. 56 1

    [11]

    Chen K, Wang S F, Song M X 2016 Int. J. Heat Mass Transfer 93 108

    [12]

    Zhang X C, Han X F, Sarvey T E, Green C E, Kottke P A, Fedorov A G, Joshi Y, Bakir M S 2016 J. Electron. Packag. 138 010910

    [13]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [14]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge:Cambridge University Press) pp1-314

    [15]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey:Wiley) pp1-62

    [16]

    Chen L G, Feng H J 2016 Multi-objective Constructal Optimization for Flow and Heat and Mass Transfer Processes (Beijing:Science Press) pp1-23(in Chinese)[陈林根, 冯辉君2016流动和传热传质过程的多目标构形优化(北京:科学出版社)第123页]

    [17]

    Bejan A 2016 The Physics of Life:The Evolution of Everything (New York:St. Martin' s Press) pp1-27

    [18]

    Chen L G 2012 Sci. China Tech. Sci. 55 802

    [19]

    Bejan A, Errera M R 2016 J. Appl. Phys. 119 074901

    [20]

    Bejan A, Fowler A J, Stanescu G 1995 Int. J. Heat Mass Transfer 38 2047

    [21]

    Stanescu G, Fowler A J, Bejan A 1996 Int. J. Heat Mass Transfer 39 311

    [22]

    Jassim E, Muzychka Y S 2010 J. Heat Transfer 132 011701

    [23]

    Hajmohammadi M R, Poozesh S, Nourazar S S 2012 Proc. IMechE Part E J. Process Mech. Eng. 226 324

    [24]

    Hajmohammadi M R, Poozesh S, Nourazar S S, Manesh A H 2013 Mech. Sci. Tech. 27 1143

    [25]

    Pedrotti V A, Souza J A, Isoldi J A, dos Santos E D, Isoldi L A 2015 Engenharia Termica ( Thermal Engineering) 14 16

    [26]

    Shi Z Y, Dong T 2015 Energ. Convers. Manage. 106 300

    [27]

    Singh D K, Singh S N 2015 Int. J. Heat Mass Transfer 89 444

    [28]

    Fan X D, Xie Z H, Sun F R, Yang A B 2016 J. Eng. Therm. 37 1994 (in Chinese)[范旭东, 谢志辉, 孙丰瑞, 杨爱波2016工程热 37 1994]

    [29]

    Fan X D 2015 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[范旭东2015硕士学位论文(武汉:海军工程大学)]

    [30]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2015 Int. Commun. Heat Mass Transfer 68 1

    [31]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2014 Chinese Sci. Bull. 59 3609 (in Chinese)[龚舒文, 陈林根, 冯辉君, 谢志辉, 孙丰瑞2014科学通报59 3609]

    [32]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2016 Sci. China Tech. Sci. 59 631

    [33]

    Gong S W 2014 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[龚舒文2014硕士学位论文(武汉:海军工程大学)]

    [34]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [35]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing:Science Press) pp78-97(in Chinese)[李志信, 过增元2010对流传热优化的场协同理论(北京:科学出版社)第7897页]

    [36]

    Chen L G 2012 Chinese Sci. Bull. 57 4404

    [37]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [38]

    Cheng X T, Liang X G 2014 Chinese Sci. Bull. 59 5309

    [39]

    Chen L G 2014 Sci China Tech. Sci. 57 2305

    [40]

    Cheng X T, Liang X G, Guo Z Y 2011 Chinese Sci. Bull. 56 847

    [41]

    Hu G J, Cao B Y, Guo Z Y 2011 Chinese Sci. Bull. 56 2974

    [42]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [43]

    Zhao T, Chen Q 2013 Acta Phys. Sin. 62 234401 (in Chinese)[赵甜, 陈群2013 62 234401]

    [44]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese)[程雪涛, 梁新刚2014 63 190501]

    [45]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [46]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩2015 64 244401]

    [47]

    Chen G M, Tso C P 2012 Int. J. Heat Mass Transfer 55 3744

    [48]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [49]

    Wu J, Cheng X 2013 Int. J. Heat Mass Transfer 58 374

    [50]

    Yuan F, Chen Q 2012 Chinese Sci. Bull. 57 687

    [51]

    Zheng Z J, He Y L, Li Y S 2014 Sci. China Tech. Sci. 57 773

    [52]

    Xia S J, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 3587

    [53]

    Guo J F, Huai X L, Li X F, Cai J, Wang Y W 2013 Energy 63 95

    [54]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E Tech. Sci. 51 1283

    [55]

    Chen L G, Feng H J, Xie Z H 2016 Entropy 18 353

    [56]

    Chen L G, Yang A B, Xie Z H, Feng H J, Sun F R 2017 Int. J. Therm. Sci. 111 168

    [57]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 3504

    [58]

    Xie Z H, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 4418

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2016 J. Energy Inst. 89 302

    [60]

    COMSOL 2012 COMSOL Multiphysics User' s Guide (Version 4.3b) (Sweden:COMSOL Incorporated) pp103-147

  • [1] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [2] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测.  , 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [3] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究.  , 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [4] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的+形高导热构形通道实验研究.  , 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [6] 李鹤龄, 王娟娟, 杨斌, 王亚妮, 沈宏君. 广义不确定性原理下费米气体低温热力学性质.  , 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [7] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化.  , 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化.  , 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究.  , 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] 冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚. 可延展柔性无机微纳电子器件原理与研究进展.  , 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [13] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [14] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化.  , 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [15] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [16] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算.  , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [17] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [18] 宋海峰, 刘海风. 金属铍热力学性质的理论研究.  , 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [19] 欧发. 耗散系统的准热力学模型.  , 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正.  , 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
计量
  • 文章访问数:  6671
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04
  • 修回日期:  2017-05-22
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map