搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(火积)的宏观物理意义及其应用

赵甜 陈群

引用本文:
Citation:

(火积)的宏观物理意义及其应用

赵甜, 陈群

Macroscopic physical meaning of entransy and its application

Zhao Tian, Chen Qun
PDF
导出引用
  • 提高传热过程的性能是解决能源问题的重要途径之一. 本文通过与力学中相关概念进行对比,分析了传热过程性能优化的新物理量——(火积)的宏观物理意义. 通过(火积)与物体对外传热能力、(火积)定义的传热过程效率以及(火积)与热量传递驱动力的关系三方面分析,发现(火积)具有的宏观物理意义是物体包含的热量在温度场中所具有的势能. 并且,通过对流换热的(火积)理论优化介绍了(火积)理论在工程实际中的应用.
    It is an important approach to solve energy problem by improving performance of heat transfer process. The macro physical meaning of new physical quantity for heat transfer process optimization “entransy” is analyzed by comparing it with interrelated concepts in mechanics. From three aspects: the connection of entransy and the external heat transfer ability, efficiency of heat transfer process defined by entransy, and the relation of heat transfer driving force with entransy, the macro physical meaning of entransy is derived, which is the potential energy of heat in the temperature field. Moreover, the application of entransy theory in engineering is introduced through entransy theory optimization in convective heat transfer.
    • 基金项目: 国家自然科学基金(批准号:51006060)和全国优秀博士学位论文作者专项基金(批准号:201150)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51006060), the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD) (Grant No. 201150).
    [1]

    Xiao L 2008 China-US Energy Cooperation Prospects and Strategies: Improve energy security and environmental protection (Beijing: World Knowledge Press) p16 (in Chinese) [肖炼 2008 中美能源合作前景及对策: 改善能源安全和环境保护 (北京: 世界知识出版社) 第16页]

    [2]

    Bergles A E 1988 J. Heat Transf.-Trans. ASME. 110 1082

    [3]

    Webb R L, Bergles A E 1983 Mech. Eng. 115 60

    [4]

    Webb R L 1994 Principles of Enhanced Heat Transfer (New York: John Wiley & Sons) pp12–30

    [5]

    Guo Z Y, Li Z X, Zhou S Q, Xiong D X 1996 Sci. China-Technol. Sci. 39 68

    [6]

    Zhou S Q 1995 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [周森泉 1995 博士学位论文 (北京: 清华大学)]

    [7]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transf. 41 2221

    [8]

    Guo Z Y 2001 Chin. Sci Bull. 46 596

    [9]

    Bejan A 1979 J. Heat Transf. Trans. ASME. 101 718

    [10]

    Shah R K, Skiepko K 2004 J. Heat Transf. Trans. ASME. 126 994

    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transf. 50 2545

    [12]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [13]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A-Math. Phys. Eng. Sci. 467 1012

    [14]

    Li Q Y, Chen Q 2011 Chin. Sci. Bull. 56 2819 (in Chinese) [李秦宜, 陈群 2011 科学通报 56 2819]

    [15]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 57

    [16]

    Chen X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [17]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [18]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [19]

    Yuan F, Chen Q 2011 Energy 36 5476

    [20]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [21]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [22]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈群 2008 博士学位论文 (北京: 清华大学)]

    [23]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [24]

    Chen Q, Ren J X, Meng J A 2007 Int. J. Heat Mass Transf. 50 5334

    [25]

    Meng J A, Liang X G, Li Z X 2005 Int. J. Heat Mass Transf. 48 3331

    [26]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [27]

    Chen Q, Wu J, Wang M R, Pan N, Guo Z Y 2011 Chin. Sci. Bull. 56 79 (in Chinese) [陈群, 吴晶, 王沫然, 潘宁, 过增元 2011 科学通报 56 79]

    [28]

    Liu X B 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [柳雄斌 2009 博士学位论文 (北京: 清华大学)]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [30]

    Xu Y C, Chen Q 2012 Energy Build. 48 50

    [31]

    Chen Q, Xu Y C 2012 Energy 37 571

    [32]

    Chen Q, Xu Y C 2012 Int. J. Heat Mass Transf. 55 5148

    [33]

    Liu X B, Wang M R, Meng J A, Guo Z Y 2010 Int. J. Nonlinear Sci. Numer. Simul. 11 113

    [34]

    Fourier J 1955 The Analytical Theory of Heat (New York: Courier Dover Publications) p2, 23

    [35]

    Rankine W 1853 Philosophical Magazine 5 106

    [36]

    Li Z X, Guo Z Y 2010 Field Synergy Theory of Convective Heat Transfer (Beijing: Science Press) pp98–127 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第98–127页]

  • [1]

    Xiao L 2008 China-US Energy Cooperation Prospects and Strategies: Improve energy security and environmental protection (Beijing: World Knowledge Press) p16 (in Chinese) [肖炼 2008 中美能源合作前景及对策: 改善能源安全和环境保护 (北京: 世界知识出版社) 第16页]

    [2]

    Bergles A E 1988 J. Heat Transf.-Trans. ASME. 110 1082

    [3]

    Webb R L, Bergles A E 1983 Mech. Eng. 115 60

    [4]

    Webb R L 1994 Principles of Enhanced Heat Transfer (New York: John Wiley & Sons) pp12–30

    [5]

    Guo Z Y, Li Z X, Zhou S Q, Xiong D X 1996 Sci. China-Technol. Sci. 39 68

    [6]

    Zhou S Q 1995 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [周森泉 1995 博士学位论文 (北京: 清华大学)]

    [7]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transf. 41 2221

    [8]

    Guo Z Y 2001 Chin. Sci Bull. 46 596

    [9]

    Bejan A 1979 J. Heat Transf. Trans. ASME. 101 718

    [10]

    Shah R K, Skiepko K 2004 J. Heat Transf. Trans. ASME. 126 994

    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transf. 50 2545

    [12]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [13]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A-Math. Phys. Eng. Sci. 467 1012

    [14]

    Li Q Y, Chen Q 2011 Chin. Sci. Bull. 56 2819 (in Chinese) [李秦宜, 陈群 2011 科学通报 56 2819]

    [15]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 57

    [16]

    Chen X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [17]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [18]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [19]

    Yuan F, Chen Q 2011 Energy 36 5476

    [20]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [21]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [22]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈群 2008 博士学位论文 (北京: 清华大学)]

    [23]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [24]

    Chen Q, Ren J X, Meng J A 2007 Int. J. Heat Mass Transf. 50 5334

    [25]

    Meng J A, Liang X G, Li Z X 2005 Int. J. Heat Mass Transf. 48 3331

    [26]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [27]

    Chen Q, Wu J, Wang M R, Pan N, Guo Z Y 2011 Chin. Sci. Bull. 56 79 (in Chinese) [陈群, 吴晶, 王沫然, 潘宁, 过增元 2011 科学通报 56 79]

    [28]

    Liu X B 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [柳雄斌 2009 博士学位论文 (北京: 清华大学)]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [30]

    Xu Y C, Chen Q 2012 Energy Build. 48 50

    [31]

    Chen Q, Xu Y C 2012 Energy 37 571

    [32]

    Chen Q, Xu Y C 2012 Int. J. Heat Mass Transf. 55 5148

    [33]

    Liu X B, Wang M R, Meng J A, Guo Z Y 2010 Int. J. Nonlinear Sci. Numer. Simul. 11 113

    [34]

    Fourier J 1955 The Analytical Theory of Heat (New York: Courier Dover Publications) p2, 23

    [35]

    Rankine W 1853 Philosophical Magazine 5 106

    [36]

    Li Z X, Guo Z Y 2010 Field Synergy Theory of Convective Heat Transfer (Beijing: Science Press) pp98–127 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第98–127页]

  • [1] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射.  , 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [2] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较.  , 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [3] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的+形高导热构形通道实验研究.  , 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [4] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解.  , 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [5] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化.  , 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [6] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究.  , 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [7] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化.  , 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] 翟岱亮, 雷虎民, 李海宁, 李炯, 邵雷. 概率假设密度滤波的物理空间意义.  , 2014, 63(20): 200204. doi: 10.7498/aps.63.200204
    [9] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究.  , 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [10] 程雪涛, 梁新刚. (火积)理论在热功转换过程中的应用探讨.  , 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响.  , 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [12] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化.  , 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [13] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [14] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析.  , 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [15] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展.  , 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [16] 程雪涛, 董源, 梁新刚. 积与积减原理.  , 2011, 60(11): 114402. doi: 10.7498/aps.60.114402
    [17] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述.  , 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [18] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理.  , 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [19] 阮航宇, 陈一新. 具有物理背景的高维Painlevé可积模型.  , 2001, 50(4): 577-585. doi: 10.7498/aps.50.577
    [20] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线.  , 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
计量
  • 文章访问数:  8311
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-01
  • 修回日期:  2013-08-28
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map