搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热漏对换热器(火积)耗散最小化的影响

夏少军 陈林根 戈延林 孙丰瑞

引用本文:
Citation:

热漏对换热器(火积)耗散最小化的影响

夏少军, 陈林根, 戈延林, 孙丰瑞

Influence of heat leakage on entransy dissipation minimization of heat exchanger

Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui
PDF
导出引用
  • 建立了存在热漏的换热器的传热过程模型. 假定热流体与冷流体间的传热以及冷流体与外界环境间的热漏均服从牛顿传热定律,在冷流体净传热量一定的条件下,应用最优控制理论导出了换热过程(火积)耗散最小时热流体温度和冷流体温度的最优构型,并将最优路径分别与热流体温度一定和热流率一定的传统传热策略进行了比较. 研究结果对于实际换热器的优化设计和最优运行具有一定的理论指导意义.
    Model of a heat transfer process in heat exchanger with heat leakage is established in this paper. Both the heat flux between the hot and cold fluids and the heat leakage between the cold fluid and outside environment are assumed to obey Newtonian heat transfer law. On condition that the net amount of heat transferred by the cold fluid is given, the optimal temperature configurations of the hot and cold fluids for the minimum entransy dissipation of the heat transfer process are derived by using the optimal control theory. Optimal paths are also compared with the conventional strategies of heat transfer under constant hot fluid temperature and constant heat flux rate operation. The results obtained in this paper could provide some theoretical guidelines for the optimal design and operation of real heat exchangers.
    • 基金项目: 国家自然科学基金(批准号:51176203,10905093)和海军工程大学博士生创新基金(批准号:HGBSJJ-2011002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51176203, 10905093) and the Innovation Foundation for the Doctor of Naval University of Engineering, China (Grant No. HGBSJJ-2011002).
    [1]

    Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62

    [2]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [3]

    Chen L G, Sun F R, Wu C 1998 Prog. Phys. 18 393 (in Chinese) [陈林根, 孙丰瑞, Wu C 1998 物理学进展 18 393]

    [4]

    Chen L G, Wu C, Sun F R 1999 J. Non-Equilib. Thermodyn. 24 237

    [5]

    Chen L G 2005 Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (Beijing: Higher Education Press) (in Chinese) [陈林根 2005 不可逆过程和循环的有限时间热力学分析 (北京: 高等教育出版社)]

    [6]

    He J Z, Wang L, Li J B 2005 Acta Phys. Sin. 54 24 (in Chinese) [何济洲, 王磊, 李俊彬 2005 54 24]

    [7]

    Wu F, Chen L G, Sun F R, Yu J Y 2008 Finite Time Thermodynamic Optimization for Stirling Machines (Beijing: Chemical Industry Press) (in Chinese) [吴锋, 陈林根, 孙丰瑞, 喻九阳 2008 斯特林机的有限时间热力学优化 (北京: 化学工业出版社)]

    [8]

    Sieniutycz S, Jezowski J 2009 Energy Optimization in Process Systems (Oxford: Elsevier)

    [9]

    He J Z, He B X 2010 Acta Phys. Sin. 59 2345 (in Chinese) [何济洲, 贺兵香 2010 59 2345]

    [10]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [11]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [12]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双泉, 何济洲, 刘江涛 2012 61 080509]

    [13]

    Cheng H T, He J Z, Xiao Y L 2012 Acta Phys. Sin. 61 010502 (in Chinese) [程海涛, 何济洲, 肖宇玲 2012 61 010502]

    [14]

    Li J, Chen L G, Ge Y L, Sun F R 2013 Acta Phys. Sin. 62 130501 (in Chinese)[李俊, 陈林根, 戈延林, 孙丰瑞 2013 62 130501]

    [15]

    Bejan A 1977 Trans. ASME J. Heat Transfer. 99 374

    [16]

    Bejan A 1980 Energy 5 720

    [17]

    Linetskii S B, Tsirlin A M 1988 Therm. Eng. 35 593

    [18]

    Andresen B, Gordon J M 1992 J. Appl. Phys. 71 76

    [19]

    Badescu V 2004 J. Phys. D 37 2298

    [20]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [21]

    Johannessen E, Nummedal L, Kjelstrup S 2002 Int. J. Heat Mass Transfer 45 2649

    [22]

    Balkan F 2003 Int. J. Energy Res. 27 1003

    [23]

    Balkan F 2005 Energy Convers. Manage. 46 2134

    [24]

    Andresen B, Gordon J M 1992 Int. J. Heat Fluid Flow 13 294

    [25]

    Badescu V 2004 J. Non-Equilib. Thermodyn. 29 53

    [26]

    Xia S J, Chen L G, Sun F R 2009 Brazilian J. Phys. 39 98

    [27]

    Chen L G, Xia S J, Sun F R 2009 J. Appl. Phys. 105 044907

    [28]

    Bejan A 1996 Entropy Generation Minimization (Boca Raton: CRC Press) p369

    [29]

    Xu Z M, Yang S R, Chen Z Q 1995 J. Chem. Ind. Eng. 46 75 (in Chinese) [徐志明, 扬善让, 陈钟颀 1995 化工学报 46 75]

    [30]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [31]

    Shah R K, Skiepko T 2004 Trans. ASME J. Heat Transfer 126 994

    [32]

    Guo Z Y, Li Z X, Zhou S Q 1996 Sci. China E 39 68

    [33]

    Guo Z Y, Zhou S Q, Li Z X, Chen L G 2002 Int. J. Heat Mass Transfer 45 2119

    [34]

    Guo Z Y, Wei S, Cheng X G 2004 Chin. Sci. Bull. 49 111

    [35]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [36]

    Guo Z Y 2008 J. Eng. Thermophys. 29 112 (in Chinese) [过增元 2008 工程热 29 112]

    [37]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [38]

    Li Z X, Guo Z Y 2010 Field Synergy Theory for Convective Heat Transfer Optimization (Beijing: Science Press) (in Chinese) [李志信,过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社)]

    [39]

    Li Z X, Guo Z Y 2011 Adv. Transp. Phenom. 2 1

    [40]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [41]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [42]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [43]

    Hu G J, Guo Z Y 2011 J. Eng. Thermophys. 32 1005 (in Chinese) [胡帼杰, 过增元 2011 工程热 32 1005]

    [44]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 60 060512]

    [45]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [46]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 60 114402]

    [47]

    Xia S J, Chen L G, Ge Y L, Sun F R 2013 Acta Phys. Sin. 62 180202 (in Chinese) [夏少军, 陈林根, 戈延林, 孙丰瑞 2013 62 180202]

    [48]

    Cheng X G, Meng J A, Guo Z Y 2005 J. Eng. Thermophys. 26 1034 (in Chinese) [程新广, 孟继安, 过增元 2005 工程热 26 1034]

    [49]

    Han G Z, Guo Z Y 2006 J. Eng. Thermophys. 27 811 (in Chinese) [韩光泽, 过增元 2006 工程热 27 811]

    [50]

    Ge L, Xu M T, Cheng L 2011 J. Eng. Thermophys. 32 993 (in Chinese) [葛亮, 许明田, 程林 2011 工程热 32 993]

    [51]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [52]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [53]

    Wang S, Chen Q, Zhang B 2009 Chin. Sci. Bull. 54 3572

    [54]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [55]

    Chen Q, Zhu H Y, Pan N, Guo Z 2011 Proc. R. Soc. A 467 1012

    [56]

    Yuan F, Chen Q 2011 Energy 36 5476

    [57]

    Jia H, Liu W, Liu Z C 2012 Chem. Eng. Sci. 69 225

    [58]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 02503

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [60]

    Wu J, Liang X G 2008 Sci. China E 51 1306

    [61]

    Cheng X T, Xu X H, Liang X G 2010 J. Eng. Thermophys. 31 1031 (in Chinese) [程雪涛, 徐向华, 梁新刚 2010 工程热 31 1031]

    [62]

    Cheng X T, Liang X G 2012 J. Eng. Thermophys. 33 311 (in Chinese) [程雪涛, 梁新刚 2012 工程热 33 311]

    [63]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [64]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [65]

    Xia S J, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 960

    [66]

    Chen Q, Ren J X 2007 J. Eng. Thermophys. 28 505 (in Chinese) [陈群, 任建勋 2007 工程热 28 505]

    [67]

    Chen Q, Meng J A 2008 Int. J. Heat Mass Transfer 51 2863

    [68]

    Chen L, Chen Q, Li Z, Guo Z Y 2010 Chin. Sci. Bull. 55 1445

    [69]

    Jiang Y, Xie X Y, Liu X H 2011 Heat. Vent. Air Cond. 41 51 (in Chinese) [江亿, 谢晓云, 刘晓华 2011 暖通空调 41 51]

    [70]

    Yuan F, Chen Q 2012 Chin. Sci. Bull. 57 687

    [71]

    Zhang T, Liu X H, Zhang L, Jiang Y 2012 Energy Convers. Manage. 59 103

    [72]

    Chen L G 2013 J. Naval Univ. Eng. 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [73]

    Song W M, Meng J A, Liang X G, Li Z X 2008 J. Chem. Ind. Eng. 59 2460 (in Chinese) [宋伟明, 孟继安, 梁新刚, 李志信 2008 化工学报 59 2460]

    [74]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [75]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [76]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [77]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [78]

    Xia S J, Chen L G, Sun F R 2010 Appl. Math. Model. 34 2242

    [79]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [80]

    Guo J F, Xu M T, Cheng L 2010 Sci. China: Tech. Sci. 53 1309

    [81]

    Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2071

    [82]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [83]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [84]

    Cheng X T, Liang X G 2012 Energy 46 386

    [85]

    Guo J F, Huai X L 2012 Energy 43 355

    [86]

    Guo J F, Huai X L 2012 Energy 41 335

    [87]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [88]

    Cheng X T, Liang X G 2012 Energy 44 964

    [89]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China: Tech. Sci. 55 2847

    [90]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [91]

    Sun C, Cheng X T, Liang X G 2013 J. Engng. Thermophys. 34 914 (in Chinese) [孙晨, 程雪涛, 梁新刚 2013 工程热 34 914]

    [92]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [93]

    Cheng X T, Liang X G 2012 Energy 47 421

    [94]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

  • [1]

    Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62

    [2]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [3]

    Chen L G, Sun F R, Wu C 1998 Prog. Phys. 18 393 (in Chinese) [陈林根, 孙丰瑞, Wu C 1998 物理学进展 18 393]

    [4]

    Chen L G, Wu C, Sun F R 1999 J. Non-Equilib. Thermodyn. 24 237

    [5]

    Chen L G 2005 Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (Beijing: Higher Education Press) (in Chinese) [陈林根 2005 不可逆过程和循环的有限时间热力学分析 (北京: 高等教育出版社)]

    [6]

    He J Z, Wang L, Li J B 2005 Acta Phys. Sin. 54 24 (in Chinese) [何济洲, 王磊, 李俊彬 2005 54 24]

    [7]

    Wu F, Chen L G, Sun F R, Yu J Y 2008 Finite Time Thermodynamic Optimization for Stirling Machines (Beijing: Chemical Industry Press) (in Chinese) [吴锋, 陈林根, 孙丰瑞, 喻九阳 2008 斯特林机的有限时间热力学优化 (北京: 化学工业出版社)]

    [8]

    Sieniutycz S, Jezowski J 2009 Energy Optimization in Process Systems (Oxford: Elsevier)

    [9]

    He J Z, He B X 2010 Acta Phys. Sin. 59 2345 (in Chinese) [何济洲, 贺兵香 2010 59 2345]

    [10]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [11]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [12]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双泉, 何济洲, 刘江涛 2012 61 080509]

    [13]

    Cheng H T, He J Z, Xiao Y L 2012 Acta Phys. Sin. 61 010502 (in Chinese) [程海涛, 何济洲, 肖宇玲 2012 61 010502]

    [14]

    Li J, Chen L G, Ge Y L, Sun F R 2013 Acta Phys. Sin. 62 130501 (in Chinese)[李俊, 陈林根, 戈延林, 孙丰瑞 2013 62 130501]

    [15]

    Bejan A 1977 Trans. ASME J. Heat Transfer. 99 374

    [16]

    Bejan A 1980 Energy 5 720

    [17]

    Linetskii S B, Tsirlin A M 1988 Therm. Eng. 35 593

    [18]

    Andresen B, Gordon J M 1992 J. Appl. Phys. 71 76

    [19]

    Badescu V 2004 J. Phys. D 37 2298

    [20]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [21]

    Johannessen E, Nummedal L, Kjelstrup S 2002 Int. J. Heat Mass Transfer 45 2649

    [22]

    Balkan F 2003 Int. J. Energy Res. 27 1003

    [23]

    Balkan F 2005 Energy Convers. Manage. 46 2134

    [24]

    Andresen B, Gordon J M 1992 Int. J. Heat Fluid Flow 13 294

    [25]

    Badescu V 2004 J. Non-Equilib. Thermodyn. 29 53

    [26]

    Xia S J, Chen L G, Sun F R 2009 Brazilian J. Phys. 39 98

    [27]

    Chen L G, Xia S J, Sun F R 2009 J. Appl. Phys. 105 044907

    [28]

    Bejan A 1996 Entropy Generation Minimization (Boca Raton: CRC Press) p369

    [29]

    Xu Z M, Yang S R, Chen Z Q 1995 J. Chem. Ind. Eng. 46 75 (in Chinese) [徐志明, 扬善让, 陈钟颀 1995 化工学报 46 75]

    [30]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [31]

    Shah R K, Skiepko T 2004 Trans. ASME J. Heat Transfer 126 994

    [32]

    Guo Z Y, Li Z X, Zhou S Q 1996 Sci. China E 39 68

    [33]

    Guo Z Y, Zhou S Q, Li Z X, Chen L G 2002 Int. J. Heat Mass Transfer 45 2119

    [34]

    Guo Z Y, Wei S, Cheng X G 2004 Chin. Sci. Bull. 49 111

    [35]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [36]

    Guo Z Y 2008 J. Eng. Thermophys. 29 112 (in Chinese) [过增元 2008 工程热 29 112]

    [37]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [38]

    Li Z X, Guo Z Y 2010 Field Synergy Theory for Convective Heat Transfer Optimization (Beijing: Science Press) (in Chinese) [李志信,过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社)]

    [39]

    Li Z X, Guo Z Y 2011 Adv. Transp. Phenom. 2 1

    [40]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [41]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [42]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [43]

    Hu G J, Guo Z Y 2011 J. Eng. Thermophys. 32 1005 (in Chinese) [胡帼杰, 过增元 2011 工程热 32 1005]

    [44]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 60 060512]

    [45]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [46]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 60 114402]

    [47]

    Xia S J, Chen L G, Ge Y L, Sun F R 2013 Acta Phys. Sin. 62 180202 (in Chinese) [夏少军, 陈林根, 戈延林, 孙丰瑞 2013 62 180202]

    [48]

    Cheng X G, Meng J A, Guo Z Y 2005 J. Eng. Thermophys. 26 1034 (in Chinese) [程新广, 孟继安, 过增元 2005 工程热 26 1034]

    [49]

    Han G Z, Guo Z Y 2006 J. Eng. Thermophys. 27 811 (in Chinese) [韩光泽, 过增元 2006 工程热 27 811]

    [50]

    Ge L, Xu M T, Cheng L 2011 J. Eng. Thermophys. 32 993 (in Chinese) [葛亮, 许明田, 程林 2011 工程热 32 993]

    [51]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [52]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [53]

    Wang S, Chen Q, Zhang B 2009 Chin. Sci. Bull. 54 3572

    [54]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [55]

    Chen Q, Zhu H Y, Pan N, Guo Z 2011 Proc. R. Soc. A 467 1012

    [56]

    Yuan F, Chen Q 2011 Energy 36 5476

    [57]

    Jia H, Liu W, Liu Z C 2012 Chem. Eng. Sci. 69 225

    [58]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 02503

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 62 134703]

    [60]

    Wu J, Liang X G 2008 Sci. China E 51 1306

    [61]

    Cheng X T, Xu X H, Liang X G 2010 J. Eng. Thermophys. 31 1031 (in Chinese) [程雪涛, 徐向华, 梁新刚 2010 工程热 31 1031]

    [62]

    Cheng X T, Liang X G 2012 J. Eng. Thermophys. 33 311 (in Chinese) [程雪涛, 梁新刚 2012 工程热 33 311]

    [63]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [64]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [65]

    Xia S J, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 960

    [66]

    Chen Q, Ren J X 2007 J. Eng. Thermophys. 28 505 (in Chinese) [陈群, 任建勋 2007 工程热 28 505]

    [67]

    Chen Q, Meng J A 2008 Int. J. Heat Mass Transfer 51 2863

    [68]

    Chen L, Chen Q, Li Z, Guo Z Y 2010 Chin. Sci. Bull. 55 1445

    [69]

    Jiang Y, Xie X Y, Liu X H 2011 Heat. Vent. Air Cond. 41 51 (in Chinese) [江亿, 谢晓云, 刘晓华 2011 暖通空调 41 51]

    [70]

    Yuan F, Chen Q 2012 Chin. Sci. Bull. 57 687

    [71]

    Zhang T, Liu X H, Zhang L, Jiang Y 2012 Energy Convers. Manage. 59 103

    [72]

    Chen L G 2013 J. Naval Univ. Eng. 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [73]

    Song W M, Meng J A, Liang X G, Li Z X 2008 J. Chem. Ind. Eng. 59 2460 (in Chinese) [宋伟明, 孟继安, 梁新刚, 李志信 2008 化工学报 59 2460]

    [74]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [75]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [76]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [77]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [78]

    Xia S J, Chen L G, Sun F R 2010 Appl. Math. Model. 34 2242

    [79]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [80]

    Guo J F, Xu M T, Cheng L 2010 Sci. China: Tech. Sci. 53 1309

    [81]

    Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2071

    [82]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [83]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [84]

    Cheng X T, Liang X G 2012 Energy 46 386

    [85]

    Guo J F, Huai X L 2012 Energy 43 355

    [86]

    Guo J F, Huai X L 2012 Energy 41 335

    [87]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [88]

    Cheng X T, Liang X G 2012 Energy 44 964

    [89]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China: Tech. Sci. 55 2847

    [90]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [91]

    Sun C, Cheng X T, Liang X G 2013 J. Engng. Thermophys. 34 914 (in Chinese) [孙晨, 程雪涛, 梁新刚 2013 工程热 34 914]

    [92]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [93]

    Cheng X T, Liang X G 2012 Energy 47 421

    [94]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

  • [1] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验.  , 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [2] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题.  , 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [3] 魏益焕. Kiselev黑洞的热力学性质和物质吸积特性.  , 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [4] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较.  , 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [5] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究.  , 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [6] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化.  , 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [7] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解.  , 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [8] 程雪涛, 梁新刚. (火积)理论在热功转换过程中的应用探讨.  , 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [9] 肖宇玲, 何济洲, 程海涛. 温库边界对布朗热机性能的影响.  , 2014, 63(20): 200501. doi: 10.7498/aps.63.200501
    [10] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化.  , 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [11] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [12] 程海涛, 何济洲. 一维晶格中费曼棘齿-棘爪热机.  , 2013, 62(3): 030503. doi: 10.7498/aps.62.030503
    [13] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化.  , 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [14] 李俊, 陈林根, 戈延林, 孙丰瑞. 正、反向两源热力循环有限时间热力学性能优化的研究进展.  , 2013, 62(13): 130501. doi: 10.7498/aps.62.130501
    [15] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析.  , 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [16] 程海涛, 何济洲, 肖宇玲. 周期性双势垒锯齿势中温差驱动的布朗热机.  , 2012, 61(1): 010502. doi: 10.7498/aps.61.010502
    [17] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述.  , 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [18] 柳雄斌, 过增元. 换热器性能分析新方法.  , 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] 欧发. 耗散系统的准热力学模型.  , 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正.  , 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
计量
  • 文章访问数:  6599
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14
  • 修回日期:  2013-09-20
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map