搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熵产最小化理论在传热和热功转换优化中的应用探讨

程雪涛 梁新刚

引用本文:
Citation:

熵产最小化理论在传热和热功转换优化中的应用探讨

程雪涛, 梁新刚

Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heat-work conversion

Cheng Xue-Tao, Liang Xin-Gang
PDF
导出引用
  • 针对传热和热功转换系统的优化设计,分析了熵产最小化理论的优化方向和适用条件. 熵产直接度量系统可用能或做功能力的损失,因此熵产最小化理论的优化方向为将系统可用能或做功能力的损失降到最低,从而使系统保有最大的做功能力. 然而,在工程应用中,设计目标各有不同. 因此,并非所有设计目标均能与熵产最小化的设计方向一致,这就使得熵产最小化并不总是与优化目标相关联. 针对传热速率、输出功率等可与熵产建立关联的优化目标,讨论了熵产最小化理论的适用条件. 当这些条件不能得到满足时,最小熵产并不一定对应最优性能. 对一维传热过程、换热器等传热系统和以输出功率、热功转换效率、热经济性能等为优化目标的热功转换过程进行了分析,结果验证了理论分析所得的结论.
    The entropy generation minimization is widely used to deal with optimization problems of heat transfer and heat-work conversion. However, it is found that the minimization of entropy generation does not always lead to the optimization of the design objectives in engineering. So, it is necessary to discuss the optimization direction and application preconditions of the entropy generation minimization. In this paper, we study this topic both theoretically and numerically. Our analyses show that the concept of entropy generation directly measures the exergy loss or the ability loss of doing work, so the optimization objective of the entropy generation minimization is to minimize the exergy loss and maximize the ability to do work for the optimized system. However, we have different design objectives in engineering, such as the maximum heat transfer rate, the maximum heat exchanger effectiveness, the minimum average temperature of the heated domain, the maximum output power, the maximum coefficient of performance of heat pump systems, the homogenization of temperature field, etc. Not all of these objectives are consistent with the optimization direction of the entropy generation minimization. Therefore, it is reasonable that the entropy generation minimization is not always applicable. Furthermore, when the relationship between entropy generation and design objective can be set up, the application preconditions of the entropy generation minimization are also discussed. When the preconditions are not satisfied, the entropy generation minimization does not always lead to the best system performance, either. Some examples are also presented to verify the theoretical analyses above. For heat transfer, a one-dimensional heat transfer problem and the entropy generation paradox in heat exchanger are analyzed. For the one-dimensional heat transfer problem, the entropy generation minimization leads to the minimum heat transfer rate when the temperature difference between the boundaries is fixed. Therefore, if our design objective is the maximum heat transfer rate, the entropy generation minimization is not applicable. When the heat transfer rate is fixed, smaller entropy generation rate leads to higher boundary temperature. Therefore, if our design objective is to reduce the boundary temperature, the entropy generation minimization is not applicable, either. For the entropy generation paradox, it is shown that the concept of entropy generation cannot describe the heat transfer performance of heat exchangers. Therefore, the paradox still exists and has not been removed to date. This is verified by the theoretical analyses and the numerical simulation for a parallel flow heat exchanger in which the irreversibility from the pressure drop can be ignored. For heat-work conversion, the energy flow and the exergy flow are analyzed. According to the analyses, we discuss the applicability of the entropy generation minimization to the heat-work conversion system in which the output power, the heat-work conversion efficiency and the thermo-economic performance are taken as the optimization objectives. It is also shown that the application of the entropy generation minimization is conditional. In a word, the discussion on the examples verifies the theoretical analyses.
      通信作者: 程雪涛, chengxt02@gmail.com
    • 基金项目: 国家自然科学基金(批准号:51376101)资助的课题.
      Corresponding author: Cheng Xue-Tao, chengxt02@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51376101).
    [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [3]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [4]

    Bejan A 1997 Advanced Engineering Thermodynamics (NewYork: John Wiley Sons) pp604-606

    [5]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [6]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [7]

    Onsager L 1931 Phys. Rev. 38 2265

    [8]

    Onsager L, Machlup S 1953 Phys. Rev. 91 1505

    [9]

    Prigogine I 1967 Introduction to Thermodynamics of Irreversible Processes (3rd Ed.) (New York: Interscience Publishers) pp76-77

    [10]

    Bejan A 1982 Entropy Generation Through Heat and Fluid Flow (New York: John Wiley Sons Inc.) pp119-134

    [11]

    Bejan A 1996 Entropy Generation Minimization (Florida: CRC Press) pp47-112

    [12]

    Erek A, Dincer I 2008 Int. J. Therm. Sci. 47 1077

    [13]

    Ibez G, Cuevas S 2010 Energy 35 4149

    [14]

    Guo J, Cheng L, Xu M 2009 Appl. Therm. Eng. 29 2954

    [15]

    Azoumah Y, Neveu P, Mazet N 2006 Int. J. Therm. Sci. 45 716

    [16]

    Narayan G P, John H L V, Zubair S M 2010 Int. J. Therm. Sci. 49 2057

    [17]

    Zhou S, Chen L, Sun F 2007 J. Phys. D: Appl. Phys. 40 3545

    [18]

    Chen L, Zheng J, Sun F, Wu C 2001 J. D: Appl. Phys. 34 422

    [19]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A:Math. Phys. Eng. Sci. 467 1012

    [20]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [21]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [22]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [23]

    Klein S A, Reindl D T 1998 J. Energy Res. 120 172

    [24]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

    [25]

    Salamon P, Hoffmann K H, Schubert S, Berry R S, Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73

    [26]

    Cheng X T, Liang X G 2013 Energy Convers. Manag. 73 121

    [27]

    Witte L C, Shamsundar N 1983 J. Eng. Power 105 199

    [28]

    Xu Z M, Yang S R 1996 J. Therm. Sci. 5 257

    [29]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [30]

    Ogiso K 2003 J. Heat Transfer 125 530

    [31]

    Cheng X T, Liang X G 2012 Energy 46 386

    [32]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [33]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [34]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordnance Equip. Eng. 5 1 (in Chinese) [程雪涛, 徐向华, 梁新刚 2016 兵器装备工程学报 5 1]

    [35]

    Cheng X T, Liang X G 2012 Energy 47 421

    [36]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [37]

    Vos A D 1995 Energy Convers. Manag. 36 1

    [38]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [39]

    Salamon P, Nitzan A 1981 J. Chem. Phys. 74 3546

    [40]

    Feit M 2013 12th Joint European Thermodynamics Conference Brescia, Italy, July 1-5, 2013 p16

    [41]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) pp1-220 (in Chinese) [赵凯华, 罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-220]

    [42]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [43]

    Onsager L 1931 Phys. Rev. 37 405

    [44]

    Sauar E, Kjelstrup R S, Lien K M 1996 Ind. Eng. Chem. Res. 35 4147

    [45]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [46]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull. 59 5309

    [47]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [48]

    Bejan A 2016 Renewable Sustainable Energy Rev. 53 1636

    [49]

    Kays W M, London A L 1984 Compact Heat Exchangers (New York: McGraw-Hill) pp5-98

    [50]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [51]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [52]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [53]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [54]

    Wu Y Q, Cai L, Wu H J 2016 Chin. Phys. B 25 060506

    [55]

    Cheng X T, Liang X G 2013 Energy Build. 67 387

    [56]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [57]

    Cheng X T, Liang X G 2014 Energy Convers. Manag. 80 238

  • [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [3]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [4]

    Bejan A 1997 Advanced Engineering Thermodynamics (NewYork: John Wiley Sons) pp604-606

    [5]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [6]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [7]

    Onsager L 1931 Phys. Rev. 38 2265

    [8]

    Onsager L, Machlup S 1953 Phys. Rev. 91 1505

    [9]

    Prigogine I 1967 Introduction to Thermodynamics of Irreversible Processes (3rd Ed.) (New York: Interscience Publishers) pp76-77

    [10]

    Bejan A 1982 Entropy Generation Through Heat and Fluid Flow (New York: John Wiley Sons Inc.) pp119-134

    [11]

    Bejan A 1996 Entropy Generation Minimization (Florida: CRC Press) pp47-112

    [12]

    Erek A, Dincer I 2008 Int. J. Therm. Sci. 47 1077

    [13]

    Ibez G, Cuevas S 2010 Energy 35 4149

    [14]

    Guo J, Cheng L, Xu M 2009 Appl. Therm. Eng. 29 2954

    [15]

    Azoumah Y, Neveu P, Mazet N 2006 Int. J. Therm. Sci. 45 716

    [16]

    Narayan G P, John H L V, Zubair S M 2010 Int. J. Therm. Sci. 49 2057

    [17]

    Zhou S, Chen L, Sun F 2007 J. Phys. D: Appl. Phys. 40 3545

    [18]

    Chen L, Zheng J, Sun F, Wu C 2001 J. D: Appl. Phys. 34 422

    [19]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A:Math. Phys. Eng. Sci. 467 1012

    [20]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [21]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [22]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [23]

    Klein S A, Reindl D T 1998 J. Energy Res. 120 172

    [24]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

    [25]

    Salamon P, Hoffmann K H, Schubert S, Berry R S, Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73

    [26]

    Cheng X T, Liang X G 2013 Energy Convers. Manag. 73 121

    [27]

    Witte L C, Shamsundar N 1983 J. Eng. Power 105 199

    [28]

    Xu Z M, Yang S R 1996 J. Therm. Sci. 5 257

    [29]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [30]

    Ogiso K 2003 J. Heat Transfer 125 530

    [31]

    Cheng X T, Liang X G 2012 Energy 46 386

    [32]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [33]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [34]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordnance Equip. Eng. 5 1 (in Chinese) [程雪涛, 徐向华, 梁新刚 2016 兵器装备工程学报 5 1]

    [35]

    Cheng X T, Liang X G 2012 Energy 47 421

    [36]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [37]

    Vos A D 1995 Energy Convers. Manag. 36 1

    [38]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [39]

    Salamon P, Nitzan A 1981 J. Chem. Phys. 74 3546

    [40]

    Feit M 2013 12th Joint European Thermodynamics Conference Brescia, Italy, July 1-5, 2013 p16

    [41]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) pp1-220 (in Chinese) [赵凯华, 罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-220]

    [42]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [43]

    Onsager L 1931 Phys. Rev. 37 405

    [44]

    Sauar E, Kjelstrup R S, Lien K M 1996 Ind. Eng. Chem. Res. 35 4147

    [45]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [46]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull. 59 5309

    [47]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [48]

    Bejan A 2016 Renewable Sustainable Energy Rev. 53 1636

    [49]

    Kays W M, London A L 1984 Compact Heat Exchangers (New York: McGraw-Hill) pp5-98

    [50]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [51]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [52]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [53]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [54]

    Wu Y Q, Cai L, Wu H J 2016 Chin. Phys. B 25 060506

    [55]

    Cheng X T, Liang X G 2013 Energy Build. 67 387

    [56]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [57]

    Cheng X T, Liang X G 2014 Energy Convers. Manag. 80 238

  • [1] 贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才. 基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿.  , 2023, 72(12): 124203. doi: 10.7498/aps.72.20230422
    [2] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析.  , 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [3] 王成, 范之国, 金海红, 汪先球, 华豆. 全偏振大气偏振模式成像系统的设计与优化分析.  , 2021, 70(10): 104201. doi: 10.7498/aps.70.20210104
    [4] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制.  , 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [5] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率.  , 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [6] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [7] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存.  , 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [8] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的多光参量振荡器实验研究及其逆转换过程演化分析.  , 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [9] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响.  , 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [10] 程雪涛, 梁新刚. (火积)理论在热功转换过程中的应用探讨.  , 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化.  , 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [12] 李涛, 周春兰, 刘振刚, 赵雷, 李海玲, 刁宏伟, 王文静. 晶体硅太阳电池双层电极优化分析与实验研究.  , 2012, 61(3): 038802. doi: 10.7498/aps.61.038802
    [13] 谌岩, 李雅莉, 刘建华, 张瑞军. 4 GPa压力处理对T8钢在加热过程中固态相变动力学的影响.  , 2012, 61(19): 196203. doi: 10.7498/aps.61.196203
    [14] 董源, 过增元. 非平衡热力学中传热过程熵产表达式的修正.  , 2012, 61(3): 030507. doi: 10.7498/aps.61.030507
    [15] 陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏. 掺Tm3+和Tm3+/Ho3+共掺碲钨酸盐玻璃中能量转换过程和机理.  , 2010, 59(2): 1321-1327. doi: 10.7498/aps.59.1321
    [16] 孟少英, 吴炜. 原子-二聚物分子转化系统在受激拉曼绝热过程中的绝热保真度.  , 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [17] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究.  , 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [18] 闫 冰, 潘守甫, 王志刚, 于俊华. S3解离中的非绝热过程.  , 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [19] 黄春福, 郭儒, 刘思敏, 舒强, 高垣梅, 汪大云, 刘照红, 张小华, 陆猗. 在LiNbO3:Fe晶体中暗辐照对光束从自散焦向自聚焦转换过程的影响.  , 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [20] 罗遂初, 秦大成, 吴自勤. 加热过程中Au—Ge—Ni薄膜的结构变化.  , 1982, 31(10): 1401-1404. doi: 10.7498/aps.31.1401
计量
  • 文章访问数:  7587
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13
  • 修回日期:  2016-06-21
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map