Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytical solution of the entransy dissipation of heat conduction process in isolated system

Wang Huan-Guang Wu Di Rao Zhong-Hao

Citation:

Analytical solution of the entransy dissipation of heat conduction process in isolated system

Wang Huan-Guang, Wu Di, Rao Zhong-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Entransy dissipation and entropy generation both can be used as measures of the irreversibilities of heat transfer problems. Nowadays those who oppose the entransy theory insist that the entransy is needless. In order to illustrate the necessity of the entransy theory, demonstration is made from the viewpoint of effectiveness which is based on the fact that when describing the variation of the irreversibility in the process of heat transfer, the exact analytical solution of the entransy dissipation exists, but that of the entropy generation is difficult to obtain. In this paper, one-dimensional (1D) and multi-dimensional heat conduction models within isolated systems are constructed, among which, the former is to illustrate the deriving process concisely, and the latter is to verify the universal existence of the analytical solution of entransy dissipations. In the 1D model, two bodies with the same geometrical and thermophysical properties but different initial temperatures transfer heat through the contacting surfaces; while in the three-dimensional (3D) model, the initial condition is arbitrary. According to the literature, the primary expression of the total entransy dissipation is derived when substituting the series-typed expression of temperature gradient into the universal calculating equation, which is in the form of a multi integral of a multi series. To reduce such an expression to the simplest form without performing any integral calculation, the orders of the integral and the series are exchanged, and considering the independence between the concerning variables and functions, the multi integral calculation is simplified into the product of several 1D integrals, one relates to time and is easily solved, and the others are dependent on space, of which the dimension is reduced by using the inherent orthogonality of the characteristic functions. The ultimate solutions of the entransy dissipation for all the models are expressed as the summation of a stationary item and a transient item, and the former is consistent with the result obtained from the viewpoint of thermodynamics given by the literature, and the latter has the limitation of zero when time tends to infinity. In order to verify the correctness of the universal solution of the entransy dissipation, a concrete 2D heat transfer problem is constructed, in which four bodies transfer heat through connecting faces, of which the initial temperature is centrosymmetric in the isolated system, and uniform within each body. The analytical solution of the entransy dissipation to the 2D problem has the same tendency and limitation as those of the 1D model, but varies faster on condition that the thermopysical properties of the bodies in both models are identical. In order to make comparison, the calculating equation of the entropy generation for the 1D model is also derived, which has the form of the integral of the logarithm of the series-typed temperature, and such an integral is hard to solve mathematically, which suggests the limitation of entropy when describing the variation of irreversibility from the viewpoint of heat transfer instead of thermodynamics. Through the derivation and comparison shown in this paper, the following conclusions are reached: owing to the differences in complicity between obtaining analytical solutions of the entransy dissipation and those of the entropy generation, the former is more effective when describing variation of the irreversibility in heat transfer process; for heat transfer problems of different dimensions in isolated systems, analytical solutions of the entransy dissipation are expected to be obtained when the precondition that the analytical solutions of the temperature exist, is satisfied.
      Corresponding author: Rao Zhong-Hao, raozhonghao@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNB07).
    [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass. Trans. 50 2545

    [2]

    Chen L G, Wei S H, Sun F R 2008 J. Phys. D: Appl. Phys. 41 1

    [3]

    Feng H J, Chen L G, Sun F R 2012 Sci China: Tech. Sci. 55 779

    [4]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [5]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [6]

    Chen Q, Fu R H, Xu Y C 2015 Appl. Energ. 139 81

    [7]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [8]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [9]

    Tao Y B, He Y L, Liu Y K 2014 J. Engineer. Thermophys. 35 973 (in Chinese) [陶于兵, 何雅玲, 刘永坤2014工程热 35 973]

    [10]

    Zhang L, Liu X H, Jiang Y 2013 Energy 53 332

    [11]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Commun. Heat Mass 52 26

    [12]

    Zhang Y, Chen Q, Zhang Y P, Wang X 2013 Int. J. Heat Mass. Trans. 65 265

    [13]

    Kim K H, Kim K J 2015 Int. J. Heat Mass. Trans. 84 80

    [14]

    Zhang T, Liu X H, Jiang Y 2013 Energ. Convers. Manag. 75 51

    [15]

    Cheng X, Liang X, Guo Z 2011 Chin. Sci. Bull. 56 847

    [16]

    Cheng X T, Liang X G 2012 Chin. Sci. Bull. 57 3244

    [17]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass. Trans. 63 65

    [18]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-equil. Thermody 38 259

    [19]

    Herwig H 2014 J. Heat Trans. T. ASME. 136 045501

    [20]

    Bejan A 2014 Ind. Eng. Chem. Res. 53 18352

    [21]

    Oliveira S D R, Milanez L F 2014 Int. J. Heat Mass. Trans. 79 518

    [22]

    Sekulic D P, Sciubba E, Moran M J 2015 Energy 80 251

    [23]

    Awad M M 2014 J. Heat Trans. T. ASME. 136 095502

    [24]

    Özisik M N 1993 Heat Conduction (2nd Ed.) (Hoboken: John & Sons. Inc.)

  • [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass. Trans. 50 2545

    [2]

    Chen L G, Wei S H, Sun F R 2008 J. Phys. D: Appl. Phys. 41 1

    [3]

    Feng H J, Chen L G, Sun F R 2012 Sci China: Tech. Sci. 55 779

    [4]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [5]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [6]

    Chen Q, Fu R H, Xu Y C 2015 Appl. Energ. 139 81

    [7]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [8]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [9]

    Tao Y B, He Y L, Liu Y K 2014 J. Engineer. Thermophys. 35 973 (in Chinese) [陶于兵, 何雅玲, 刘永坤2014工程热 35 973]

    [10]

    Zhang L, Liu X H, Jiang Y 2013 Energy 53 332

    [11]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Commun. Heat Mass 52 26

    [12]

    Zhang Y, Chen Q, Zhang Y P, Wang X 2013 Int. J. Heat Mass. Trans. 65 265

    [13]

    Kim K H, Kim K J 2015 Int. J. Heat Mass. Trans. 84 80

    [14]

    Zhang T, Liu X H, Jiang Y 2013 Energ. Convers. Manag. 75 51

    [15]

    Cheng X, Liang X, Guo Z 2011 Chin. Sci. Bull. 56 847

    [16]

    Cheng X T, Liang X G 2012 Chin. Sci. Bull. 57 3244

    [17]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass. Trans. 63 65

    [18]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-equil. Thermody 38 259

    [19]

    Herwig H 2014 J. Heat Trans. T. ASME. 136 045501

    [20]

    Bejan A 2014 Ind. Eng. Chem. Res. 53 18352

    [21]

    Oliveira S D R, Milanez L F 2014 Int. J. Heat Mass. Trans. 79 518

    [22]

    Sekulic D P, Sciubba E, Moran M J 2015 Energy 80 251

    [23]

    Awad M M 2014 J. Heat Trans. T. ASME. 136 095502

    [24]

    Özisik M N 1993 Heat Conduction (2nd Ed.) (Hoboken: John & Sons. Inc.)

  • [1] Shi Peng-Peng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [2] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [3] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [4] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [5] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [6] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [7] Cheng Xue-Tao, Liang Xin-Gang, Xu Xiang-Hua. Microscopic expression of entransy. Acta Physica Sinica, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [8] Shi Yu-Ren, Yang Hong-Juan. Application of the homotopy analysis method to solving dissipative system. Acta Physica Sinica, 2010, 59(1): 67-74. doi: 10.7498/aps.59.67
    [9] Mo Jia-Qi. Approximate analytic solution to a class of generalized Canard systems. Acta Physica Sinica, 2009, 58(2): 695-698. doi: 10.7498/aps.58.695
    [10] Li Jiang-Fan, Shan Shu-Min, Yang Jian-Kun, Jiang Zong-Fu. An explicit analytical solution of the Schr?dinger equation for a detuned quantum frequency conversion system. Acta Physica Sinica, 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [11] Chen Chang-Yuan, Lu Fa-Lin, Sun Dong-Sheng. Analytical solution of scattering states for Hulthén potentials. Acta Physica Sinica, 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [12] Yang Peng-Fei. Analytical solution for a class of coupled linear second-order differential equations limited by transformations. Acta Physica Sinica, 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [13] Xie Yuan-Xi, Tang Jia-Shi. A note on paper “a simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations”. Acta Physica Sinica, 2005, 54(3): 1036-1038. doi: 10.7498/aps.54.1036
    [14] Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [15] Xie Yuan-Xi, Tang Jia-Shi. A simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations. Acta Physica Sinica, 2004, 53(9): 2828-2830. doi: 10.7498/aps.53.2828
    [16] Li Zong-Cheng. Spatiotemporal relation of prolongable general relativity in the irreversible process of a dissipative system. Acta Physica Sinica, 2003, 52(4): 767-773. doi: 10.7498/aps.52.767
    [17] Li Zong-Cheng. Gravitational relation of prolongable general relativity in the irreversible process of a dissipative system. Acta Physica Sinica, 2003, 52(4): 774-780. doi: 10.7498/aps.52.774
    [18] Ai Shu-Tao, Zhong Wei-Lie, Wang Chun-Lei, Wang Jin-Feng, Zhang Pei-Lin. . Acta Physica Sinica, 2002, 51(2): 279-285. doi: 10.7498/aps.51.279
    [19] Zheng Chun-Long, Zhang Jie-Fang. . Acta Physica Sinica, 2002, 51(11): 2426-2430. doi: 10.7498/aps.51.2426
    [20] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
Metrics
  • Abstract views:  6760
  • PDF Downloads:  177
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2015
  • Accepted Date:  14 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map