Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization

Wang Gang Xie Zhi-Hui Fan Xu-Dong Chen Lin-Gen Sun Feng-Rui

Citation:

Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization

Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A three-dimensional (3D) turbulent heat dissipation model of cylindrical discrete heat generation components is established on a conductive basis. The whole solid section is set in a square channel with adiabatic walls, and the components, cooled by clean air flowing through the channel, are arranged in a line with equal spacings. The influences of the heat conductivities of the components, intensities of heat sources and velocity of fluid flow on the maximum temperature (MT) of components, the equivalent thermal resistance (ETR) based on entransy dissipation of the heat dissipation system, and the averaged Nu number are investigated with the constructal theory considering variable properties, compressibility and viscous dissipation of air. The total heat generation rate and the total heat conductivity of heat sources are fixed as the constraint conditions. The circumstances in which heat generation rates and heat conductivities of heat sources are unequal are considered. The results show that for the fixed total heat generation rate of heat sources, despite MT or ETR that is taken as the performance index for thermal design, there exists an optimal intensity distribution of heat sources for the best thermal performance of the system. In fact, for different objectives, the optimal intensity distributions of heat sources are corresponding to the best match between the distributions of heat sources and the distributions of temperature gradient. There are different optimal distributions for different velocities of the fluid flow and different optimization objectives. Besides, the averaged Nu number increases with the increase of intensity difference in heat sources, which means that the convective heat transfer is enhanced, but this phenomenon is relatively weak when the velocity of fluid flow is low. For the fixed total heat generation rate of heat sources, when the intensities of heat sources are equal and the thermal conductivities of heat sources are lower than that of the conductive basis, increasing heat conductivities of the heat sources can evidently improve thermal performance of the system; the MT can be lowest when the conductivities of heat sources increase along the fluid flow; and the ETR is lowest when the conductivities of heat sources are equal. Both the MT and the ETR decrease with the increasing velocity of fluid flow. The results can provide some theoretical guidelines for the practical thermal design of the electronic components with different materials and different heat generation rates.
      Corresponding author: Chen Lin-Gen, lingenchen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51206184) and the Independent Project of Naval University of Engineering (Grant No. 20160134).
    [1]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transfer 41 2221

    [2]

    Tao W Q, Guo Z Y, Wang B X 2002 Int. J. Heat Mass Transfer 45 3849

    [3]

    Xuan Y M 2014 Sci. China Tech. Sci. 44 269 (in Chinese)[宣益民2014中国科学:技术科学44 269]

    [4]

    Chen L G, Meng F K, Sun F R 2016 Sci. China Tech. Sci. 59 442

    [5]

    Chen Y P, Yao F, Shi M H 2012 Int. J. Heat Mass Transfer 55 4476

    [6]

    Xie G N, Liu J, Liu Y Q, Sunden B, Zhang W H 2013 Trans. ASME J. Electron. Packag. 135 021008

    [7]

    Zhao D L, Tan G 2014 Appl. Thermal Eng. 66 15

    [8]

    Kang N, Wu H Y, Xu F Y 2015 J. Engng. Thermophys. 36 1572 (in Chinese)[康宁, 吴慧英, 徐发尧2015工程热 36 1572]

    [9]

    Green C, Kottke P, Han X F, Woodrum C, Sarvey T, Asrar P, Zhang X C, Joshi Y, Fedorov A, Sitaraman S, Bakir M 2015 J. Electron. Packag. 137 040802

    [10]

    Luo X B, Hu R, Liu S, Wang K 2016 Prog. Energ. Combust. Sci. 56 1

    [11]

    Chen K, Wang S F, Song M X 2016 Int. J. Heat Mass Transfer 93 108

    [12]

    Zhang X C, Han X F, Sarvey T E, Green C E, Kottke P A, Fedorov A G, Joshi Y, Bakir M S 2016 J. Electron. Packag. 138 010910

    [13]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [14]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge:Cambridge University Press) pp1-314

    [15]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey:Wiley) pp1-62

    [16]

    Chen L G, Feng H J 2016 Multi-objective Constructal Optimization for Flow and Heat and Mass Transfer Processes (Beijing:Science Press) pp1-23(in Chinese)[陈林根, 冯辉君2016流动和传热传质过程的多目标构形优化(北京:科学出版社)第123页]

    [17]

    Bejan A 2016 The Physics of Life:The Evolution of Everything (New York:St. Martin' s Press) pp1-27

    [18]

    Chen L G 2012 Sci. China Tech. Sci. 55 802

    [19]

    Bejan A, Errera M R 2016 J. Appl. Phys. 119 074901

    [20]

    Bejan A, Fowler A J, Stanescu G 1995 Int. J. Heat Mass Transfer 38 2047

    [21]

    Stanescu G, Fowler A J, Bejan A 1996 Int. J. Heat Mass Transfer 39 311

    [22]

    Jassim E, Muzychka Y S 2010 J. Heat Transfer 132 011701

    [23]

    Hajmohammadi M R, Poozesh S, Nourazar S S 2012 Proc. IMechE Part E J. Process Mech. Eng. 226 324

    [24]

    Hajmohammadi M R, Poozesh S, Nourazar S S, Manesh A H 2013 Mech. Sci. Tech. 27 1143

    [25]

    Pedrotti V A, Souza J A, Isoldi J A, dos Santos E D, Isoldi L A 2015 Engenharia Termica ( Thermal Engineering) 14 16

    [26]

    Shi Z Y, Dong T 2015 Energ. Convers. Manage. 106 300

    [27]

    Singh D K, Singh S N 2015 Int. J. Heat Mass Transfer 89 444

    [28]

    Fan X D, Xie Z H, Sun F R, Yang A B 2016 J. Eng. Therm. 37 1994 (in Chinese)[范旭东, 谢志辉, 孙丰瑞, 杨爱波2016工程热 37 1994]

    [29]

    Fan X D 2015 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[范旭东2015硕士学位论文(武汉:海军工程大学)]

    [30]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2015 Int. Commun. Heat Mass Transfer 68 1

    [31]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2014 Chinese Sci. Bull. 59 3609 (in Chinese)[龚舒文, 陈林根, 冯辉君, 谢志辉, 孙丰瑞2014科学通报59 3609]

    [32]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2016 Sci. China Tech. Sci. 59 631

    [33]

    Gong S W 2014 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[龚舒文2014硕士学位论文(武汉:海军工程大学)]

    [34]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [35]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing:Science Press) pp78-97(in Chinese)[李志信, 过增元2010对流传热优化的场协同理论(北京:科学出版社)第7897页]

    [36]

    Chen L G 2012 Chinese Sci. Bull. 57 4404

    [37]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [38]

    Cheng X T, Liang X G 2014 Chinese Sci. Bull. 59 5309

    [39]

    Chen L G 2014 Sci China Tech. Sci. 57 2305

    [40]

    Cheng X T, Liang X G, Guo Z Y 2011 Chinese Sci. Bull. 56 847

    [41]

    Hu G J, Cao B Y, Guo Z Y 2011 Chinese Sci. Bull. 56 2974

    [42]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [43]

    Zhao T, Chen Q 2013 Acta Phys. Sin. 62 234401 (in Chinese)[赵甜, 陈群2013 62 234401]

    [44]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese)[程雪涛, 梁新刚2014 63 190501]

    [45]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [46]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩2015 64 244401]

    [47]

    Chen G M, Tso C P 2012 Int. J. Heat Mass Transfer 55 3744

    [48]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [49]

    Wu J, Cheng X 2013 Int. J. Heat Mass Transfer 58 374

    [50]

    Yuan F, Chen Q 2012 Chinese Sci. Bull. 57 687

    [51]

    Zheng Z J, He Y L, Li Y S 2014 Sci. China Tech. Sci. 57 773

    [52]

    Xia S J, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 3587

    [53]

    Guo J F, Huai X L, Li X F, Cai J, Wang Y W 2013 Energy 63 95

    [54]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E Tech. Sci. 51 1283

    [55]

    Chen L G, Feng H J, Xie Z H 2016 Entropy 18 353

    [56]

    Chen L G, Yang A B, Xie Z H, Feng H J, Sun F R 2017 Int. J. Therm. Sci. 111 168

    [57]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 3504

    [58]

    Xie Z H, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 4418

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2016 J. Energy Inst. 89 302

    [60]

    COMSOL 2012 COMSOL Multiphysics User' s Guide (Version 4.3b) (Sweden:COMSOL Incorporated) pp103-147

  • [1]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transfer 41 2221

    [2]

    Tao W Q, Guo Z Y, Wang B X 2002 Int. J. Heat Mass Transfer 45 3849

    [3]

    Xuan Y M 2014 Sci. China Tech. Sci. 44 269 (in Chinese)[宣益民2014中国科学:技术科学44 269]

    [4]

    Chen L G, Meng F K, Sun F R 2016 Sci. China Tech. Sci. 59 442

    [5]

    Chen Y P, Yao F, Shi M H 2012 Int. J. Heat Mass Transfer 55 4476

    [6]

    Xie G N, Liu J, Liu Y Q, Sunden B, Zhang W H 2013 Trans. ASME J. Electron. Packag. 135 021008

    [7]

    Zhao D L, Tan G 2014 Appl. Thermal Eng. 66 15

    [8]

    Kang N, Wu H Y, Xu F Y 2015 J. Engng. Thermophys. 36 1572 (in Chinese)[康宁, 吴慧英, 徐发尧2015工程热 36 1572]

    [9]

    Green C, Kottke P, Han X F, Woodrum C, Sarvey T, Asrar P, Zhang X C, Joshi Y, Fedorov A, Sitaraman S, Bakir M 2015 J. Electron. Packag. 137 040802

    [10]

    Luo X B, Hu R, Liu S, Wang K 2016 Prog. Energ. Combust. Sci. 56 1

    [11]

    Chen K, Wang S F, Song M X 2016 Int. J. Heat Mass Transfer 93 108

    [12]

    Zhang X C, Han X F, Sarvey T E, Green C E, Kottke P A, Fedorov A G, Joshi Y, Bakir M S 2016 J. Electron. Packag. 138 010910

    [13]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [14]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge:Cambridge University Press) pp1-314

    [15]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey:Wiley) pp1-62

    [16]

    Chen L G, Feng H J 2016 Multi-objective Constructal Optimization for Flow and Heat and Mass Transfer Processes (Beijing:Science Press) pp1-23(in Chinese)[陈林根, 冯辉君2016流动和传热传质过程的多目标构形优化(北京:科学出版社)第123页]

    [17]

    Bejan A 2016 The Physics of Life:The Evolution of Everything (New York:St. Martin' s Press) pp1-27

    [18]

    Chen L G 2012 Sci. China Tech. Sci. 55 802

    [19]

    Bejan A, Errera M R 2016 J. Appl. Phys. 119 074901

    [20]

    Bejan A, Fowler A J, Stanescu G 1995 Int. J. Heat Mass Transfer 38 2047

    [21]

    Stanescu G, Fowler A J, Bejan A 1996 Int. J. Heat Mass Transfer 39 311

    [22]

    Jassim E, Muzychka Y S 2010 J. Heat Transfer 132 011701

    [23]

    Hajmohammadi M R, Poozesh S, Nourazar S S 2012 Proc. IMechE Part E J. Process Mech. Eng. 226 324

    [24]

    Hajmohammadi M R, Poozesh S, Nourazar S S, Manesh A H 2013 Mech. Sci. Tech. 27 1143

    [25]

    Pedrotti V A, Souza J A, Isoldi J A, dos Santos E D, Isoldi L A 2015 Engenharia Termica ( Thermal Engineering) 14 16

    [26]

    Shi Z Y, Dong T 2015 Energ. Convers. Manage. 106 300

    [27]

    Singh D K, Singh S N 2015 Int. J. Heat Mass Transfer 89 444

    [28]

    Fan X D, Xie Z H, Sun F R, Yang A B 2016 J. Eng. Therm. 37 1994 (in Chinese)[范旭东, 谢志辉, 孙丰瑞, 杨爱波2016工程热 37 1994]

    [29]

    Fan X D 2015 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[范旭东2015硕士学位论文(武汉:海军工程大学)]

    [30]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2015 Int. Commun. Heat Mass Transfer 68 1

    [31]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2014 Chinese Sci. Bull. 59 3609 (in Chinese)[龚舒文, 陈林根, 冯辉君, 谢志辉, 孙丰瑞2014科学通报59 3609]

    [32]

    Gong S W, Chen L G, Feng H J, Xie Z H, Sun F R 2016 Sci. China Tech. Sci. 59 631

    [33]

    Gong S W 2014 M. S. Thesis (Wuhan:Naval University of Engineering) (in Chinese)[龚舒文2014硕士学位论文(武汉:海军工程大学)]

    [34]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [35]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing:Science Press) pp78-97(in Chinese)[李志信, 过增元2010对流传热优化的场协同理论(北京:科学出版社)第7897页]

    [36]

    Chen L G 2012 Chinese Sci. Bull. 57 4404

    [37]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [38]

    Cheng X T, Liang X G 2014 Chinese Sci. Bull. 59 5309

    [39]

    Chen L G 2014 Sci China Tech. Sci. 57 2305

    [40]

    Cheng X T, Liang X G, Guo Z Y 2011 Chinese Sci. Bull. 56 847

    [41]

    Hu G J, Cao B Y, Guo Z Y 2011 Chinese Sci. Bull. 56 2974

    [42]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [43]

    Zhao T, Chen Q 2013 Acta Phys. Sin. 62 234401 (in Chinese)[赵甜, 陈群2013 62 234401]

    [44]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese)[程雪涛, 梁新刚2014 63 190501]

    [45]

    Liu W, Liu Z C, Jia H, Fan A W, Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049

    [46]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩2015 64 244401]

    [47]

    Chen G M, Tso C P 2012 Int. J. Heat Mass Transfer 55 3744

    [48]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [49]

    Wu J, Cheng X 2013 Int. J. Heat Mass Transfer 58 374

    [50]

    Yuan F, Chen Q 2012 Chinese Sci. Bull. 57 687

    [51]

    Zheng Z J, He Y L, Li Y S 2014 Sci. China Tech. Sci. 57 773

    [52]

    Xia S J, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 3587

    [53]

    Guo J F, Huai X L, Li X F, Cai J, Wang Y W 2013 Energy 63 95

    [54]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E Tech. Sci. 51 1283

    [55]

    Chen L G, Feng H J, Xie Z H 2016 Entropy 18 353

    [56]

    Chen L G, Yang A B, Xie Z H, Feng H J, Sun F R 2017 Int. J. Therm. Sci. 111 168

    [57]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 3504

    [58]

    Xie Z H, Chen L G, Sun F R 2009 Chinese Sci. Bull. 54 4418

    [59]

    Feng H J, Chen L G, Xie Z H, Sun F R 2016 J. Energy Inst. 89 302

    [60]

    COMSOL 2012 COMSOL Multiphysics User' s Guide (Version 4.3b) (Sweden:COMSOL Incorporated) pp103-147

  • [1] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [2] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [3] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [4] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Experimental study on + shaped high conductivity constructal channels based on entransy theory. Acta Physica Sinica, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [6] Li He-Ling, Wang Juan-Juan, Yang Bin, Wang Ya-Ni, Shen Hong-Jun. Thermodynamic properties of Fermi gas under generalized uncertainty principle. Acta Physica Sinica, 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [7] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] Feng Xue, Lu Bing-Wei, Wu Jian, Lin Yuan, Song Ji-Zhou, Song Guo-Feng, Huang Yong-Gang. Review on stretchable and flexible inorganic electronics. Acta Physica Sinica, 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [11] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] Huang Yao-Qing, Hao Cheng-Hong, Zheng Ji-Ming, Ren Zhao-Yu. Si cluster based spintronics:a density functional theory study. Acta Physica Sinica, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [13] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [14] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [15] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [16] Wang Bin, Liu Ying, Ye Jin-Wen. First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure. Acta Physica Sinica, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [17] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [18] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [19] OU FA. . Acta Physica Sinica, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] LI FU-BlN. THE MICROSCOPIC PHENOMENOLOGICAL THEORY OF ANALYSIS FOR THE PROBLEM OF NONEQUILIBRIUM FLUCTUATIONS (Ⅰ)——A NEW THEORY OF EXTENDED IRREVERSIBLE THERMODY-NAMICS AND NONEQUILIBRIUM CORRECTIONS OF THE FLUCTUATION-DISSIPATION EXPRESSIONS FOR THE HEAT FL. Acta Physica Sinica, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
Metrics
  • Abstract views:  6655
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2017
  • Accepted Date:  22 May 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map