Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heat-work conversion

Cheng Xue-Tao Liang Xin-Gang

Citation:

Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heat-work conversion

Cheng Xue-Tao, Liang Xin-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The entropy generation minimization is widely used to deal with optimization problems of heat transfer and heat-work conversion. However, it is found that the minimization of entropy generation does not always lead to the optimization of the design objectives in engineering. So, it is necessary to discuss the optimization direction and application preconditions of the entropy generation minimization. In this paper, we study this topic both theoretically and numerically. Our analyses show that the concept of entropy generation directly measures the exergy loss or the ability loss of doing work, so the optimization objective of the entropy generation minimization is to minimize the exergy loss and maximize the ability to do work for the optimized system. However, we have different design objectives in engineering, such as the maximum heat transfer rate, the maximum heat exchanger effectiveness, the minimum average temperature of the heated domain, the maximum output power, the maximum coefficient of performance of heat pump systems, the homogenization of temperature field, etc. Not all of these objectives are consistent with the optimization direction of the entropy generation minimization. Therefore, it is reasonable that the entropy generation minimization is not always applicable. Furthermore, when the relationship between entropy generation and design objective can be set up, the application preconditions of the entropy generation minimization are also discussed. When the preconditions are not satisfied, the entropy generation minimization does not always lead to the best system performance, either. Some examples are also presented to verify the theoretical analyses above. For heat transfer, a one-dimensional heat transfer problem and the entropy generation paradox in heat exchanger are analyzed. For the one-dimensional heat transfer problem, the entropy generation minimization leads to the minimum heat transfer rate when the temperature difference between the boundaries is fixed. Therefore, if our design objective is the maximum heat transfer rate, the entropy generation minimization is not applicable. When the heat transfer rate is fixed, smaller entropy generation rate leads to higher boundary temperature. Therefore, if our design objective is to reduce the boundary temperature, the entropy generation minimization is not applicable, either. For the entropy generation paradox, it is shown that the concept of entropy generation cannot describe the heat transfer performance of heat exchangers. Therefore, the paradox still exists and has not been removed to date. This is verified by the theoretical analyses and the numerical simulation for a parallel flow heat exchanger in which the irreversibility from the pressure drop can be ignored. For heat-work conversion, the energy flow and the exergy flow are analyzed. According to the analyses, we discuss the applicability of the entropy generation minimization to the heat-work conversion system in which the output power, the heat-work conversion efficiency and the thermo-economic performance are taken as the optimization objectives. It is also shown that the application of the entropy generation minimization is conditional. In a word, the discussion on the examples verifies the theoretical analyses.
      Corresponding author: Cheng Xue-Tao, chengxt02@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51376101).
    [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [3]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [4]

    Bejan A 1997 Advanced Engineering Thermodynamics (NewYork: John Wiley Sons) pp604-606

    [5]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [6]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [7]

    Onsager L 1931 Phys. Rev. 38 2265

    [8]

    Onsager L, Machlup S 1953 Phys. Rev. 91 1505

    [9]

    Prigogine I 1967 Introduction to Thermodynamics of Irreversible Processes (3rd Ed.) (New York: Interscience Publishers) pp76-77

    [10]

    Bejan A 1982 Entropy Generation Through Heat and Fluid Flow (New York: John Wiley Sons Inc.) pp119-134

    [11]

    Bejan A 1996 Entropy Generation Minimization (Florida: CRC Press) pp47-112

    [12]

    Erek A, Dincer I 2008 Int. J. Therm. Sci. 47 1077

    [13]

    Ibez G, Cuevas S 2010 Energy 35 4149

    [14]

    Guo J, Cheng L, Xu M 2009 Appl. Therm. Eng. 29 2954

    [15]

    Azoumah Y, Neveu P, Mazet N 2006 Int. J. Therm. Sci. 45 716

    [16]

    Narayan G P, John H L V, Zubair S M 2010 Int. J. Therm. Sci. 49 2057

    [17]

    Zhou S, Chen L, Sun F 2007 J. Phys. D: Appl. Phys. 40 3545

    [18]

    Chen L, Zheng J, Sun F, Wu C 2001 J. D: Appl. Phys. 34 422

    [19]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A:Math. Phys. Eng. Sci. 467 1012

    [20]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [21]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [22]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [23]

    Klein S A, Reindl D T 1998 J. Energy Res. 120 172

    [24]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

    [25]

    Salamon P, Hoffmann K H, Schubert S, Berry R S, Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73

    [26]

    Cheng X T, Liang X G 2013 Energy Convers. Manag. 73 121

    [27]

    Witte L C, Shamsundar N 1983 J. Eng. Power 105 199

    [28]

    Xu Z M, Yang S R 1996 J. Therm. Sci. 5 257

    [29]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [30]

    Ogiso K 2003 J. Heat Transfer 125 530

    [31]

    Cheng X T, Liang X G 2012 Energy 46 386

    [32]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [33]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [34]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordnance Equip. Eng. 5 1 (in Chinese) [程雪涛, 徐向华, 梁新刚 2016 兵器装备工程学报 5 1]

    [35]

    Cheng X T, Liang X G 2012 Energy 47 421

    [36]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [37]

    Vos A D 1995 Energy Convers. Manag. 36 1

    [38]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [39]

    Salamon P, Nitzan A 1981 J. Chem. Phys. 74 3546

    [40]

    Feit M 2013 12th Joint European Thermodynamics Conference Brescia, Italy, July 1-5, 2013 p16

    [41]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) pp1-220 (in Chinese) [赵凯华, 罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-220]

    [42]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [43]

    Onsager L 1931 Phys. Rev. 37 405

    [44]

    Sauar E, Kjelstrup R S, Lien K M 1996 Ind. Eng. Chem. Res. 35 4147

    [45]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [46]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull. 59 5309

    [47]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [48]

    Bejan A 2016 Renewable Sustainable Energy Rev. 53 1636

    [49]

    Kays W M, London A L 1984 Compact Heat Exchangers (New York: McGraw-Hill) pp5-98

    [50]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [51]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [52]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [53]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [54]

    Wu Y Q, Cai L, Wu H J 2016 Chin. Phys. B 25 060506

    [55]

    Cheng X T, Liang X G 2013 Energy Build. 67 387

    [56]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [57]

    Cheng X T, Liang X G 2014 Energy Convers. Manag. 80 238

  • [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [3]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [4]

    Bejan A 1997 Advanced Engineering Thermodynamics (NewYork: John Wiley Sons) pp604-606

    [5]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [6]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [7]

    Onsager L 1931 Phys. Rev. 38 2265

    [8]

    Onsager L, Machlup S 1953 Phys. Rev. 91 1505

    [9]

    Prigogine I 1967 Introduction to Thermodynamics of Irreversible Processes (3rd Ed.) (New York: Interscience Publishers) pp76-77

    [10]

    Bejan A 1982 Entropy Generation Through Heat and Fluid Flow (New York: John Wiley Sons Inc.) pp119-134

    [11]

    Bejan A 1996 Entropy Generation Minimization (Florida: CRC Press) pp47-112

    [12]

    Erek A, Dincer I 2008 Int. J. Therm. Sci. 47 1077

    [13]

    Ibez G, Cuevas S 2010 Energy 35 4149

    [14]

    Guo J, Cheng L, Xu M 2009 Appl. Therm. Eng. 29 2954

    [15]

    Azoumah Y, Neveu P, Mazet N 2006 Int. J. Therm. Sci. 45 716

    [16]

    Narayan G P, John H L V, Zubair S M 2010 Int. J. Therm. Sci. 49 2057

    [17]

    Zhou S, Chen L, Sun F 2007 J. Phys. D: Appl. Phys. 40 3545

    [18]

    Chen L, Zheng J, Sun F, Wu C 2001 J. D: Appl. Phys. 34 422

    [19]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A:Math. Phys. Eng. Sci. 467 1012

    [20]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [21]

    Cheng X T, Liang X G 2014 Acta Phys. Sin. 63 190501 (in Chinese) [程雪涛, 梁新刚 2014 63 190501]

    [22]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [23]

    Klein S A, Reindl D T 1998 J. Energy Res. 120 172

    [24]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

    [25]

    Salamon P, Hoffmann K H, Schubert S, Berry R S, Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73

    [26]

    Cheng X T, Liang X G 2013 Energy Convers. Manag. 73 121

    [27]

    Witte L C, Shamsundar N 1983 J. Eng. Power 105 199

    [28]

    Xu Z M, Yang S R 1996 J. Therm. Sci. 5 257

    [29]

    Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189

    [30]

    Ogiso K 2003 J. Heat Transfer 125 530

    [31]

    Cheng X T, Liang X G 2012 Energy 46 386

    [32]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [33]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [34]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordnance Equip. Eng. 5 1 (in Chinese) [程雪涛, 徐向华, 梁新刚 2016 兵器装备工程学报 5 1]

    [35]

    Cheng X T, Liang X G 2012 Energy 47 421

    [36]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [37]

    Vos A D 1995 Energy Convers. Manag. 36 1

    [38]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [39]

    Salamon P, Nitzan A 1981 J. Chem. Phys. 74 3546

    [40]

    Feit M 2013 12th Joint European Thermodynamics Conference Brescia, Italy, July 1-5, 2013 p16

    [41]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) pp1-220 (in Chinese) [赵凯华, 罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-220]

    [42]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [43]

    Onsager L 1931 Phys. Rev. 37 405

    [44]

    Sauar E, Kjelstrup R S, Lien K M 1996 Ind. Eng. Chem. Res. 35 4147

    [45]

    Nummedal L, Kjelstrup S 2001 Int. J. Heat Mass Transfer 44 2827

    [46]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull. 59 5309

    [47]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [48]

    Bejan A 2016 Renewable Sustainable Energy Rev. 53 1636

    [49]

    Kays W M, London A L 1984 Compact Heat Exchangers (New York: McGraw-Hill) pp5-98

    [50]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [51]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [52]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [53]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [54]

    Wu Y Q, Cai L, Wu H J 2016 Chin. Phys. B 25 060506

    [55]

    Cheng X T, Liang X G 2013 Energy Build. 67 387

    [56]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [57]

    Cheng X T, Liang X G 2014 Energy Convers. Manag. 80 238

  • [1] He Hai, Yang Peng-Fei, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Birefringence compensation utilizing quarter-wave plates in cavity-enhanced spontaneous parametric down-conversion process. Acta Physica Sinica, 2023, 72(12): 124203. doi: 10.7498/aps.72.20230422
    [2] Liu Fu-Yan, Yan Bing. Applicability and optimization analysis of magnetic dipole array model. Acta Physica Sinica, 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [3] Wang Cheng, Fan Zhi-Guo, Jin Hai-Hong, Wang Xian-Qiu, Hua Dou. Design and optimization analysis of imaging system of polarized skylight pattern of full polarization. Acta Physica Sinica, 2021, 70(10): 104201. doi: 10.7498/aps.70.20210104
    [4] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [5] Li Qian-Wen, Li Ying, Zhang Rong, Lu Can-Can, Bai Long. Efficiency at arbitrary power for the Curzon-Ahlborn heat engine in linear and nonlinear heat transfer processes. Acta Physica Sinica, 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [6] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [7] Yang Ke-Li. Synchronization transition with coexistence of attractors in coupled discontinuous system. Acta Physica Sinica, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [8] Yu Yong-Ji, Chen Xin-Yu, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Experimental study of multiple optical parametric oscillator based on MgO:APLN and its evolution analysis of back conversion. Acta Physica Sinica, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [9] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [10] Cheng Xue-Tao, Liang Xin-Gang. Discussion on the application of entransy theory to heat-work conversion processes. Acta Physica Sinica, 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Entransy dissiaption minimization for isothermal throttling process. Acta Physica Sinica, 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [12] Li Tao, Zhou Chun-Lan, Liu Zhen-Gang, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimized analysis and experimental study for two-layer contact of crystalline silicon solar cells. Acta Physica Sinica, 2012, 61(3): 038802. doi: 10.7498/aps.61.038802
    [13] Chen Yan, Li Ya-Li, Liu Jian-Hua, Zhang Rui-Jun. Effect of 4 GPa pressure treatment on the solid state transformation kinetics of T8 steel in heating process. Acta Physica Sinica, 2012, 61(19): 196203. doi: 10.7498/aps.61.196203
    [14] Dong Yuan, Guo Zeng-Yuan. The modification of entropy production by heat condution in non-equilibrium thermodynamics. Acta Physica Sinica, 2012, 61(3): 030507. doi: 10.7498/aps.61.030507
    [15] Chen Gan-Xin, Zhang Qin-Yuan, Zhao Chun, Shi Dong-Mei, Jiang Zhong-Hong. Energy transfer processes and mechanisms in Tm3+ singly doped and Tm3+/Ho3+ codoped tellurite glass. Acta Physica Sinica, 2010, 59(2): 1321-1327. doi: 10.7498/aps.59.1321
    [16] Meng Shao-Ying, Wu Wei. Adiabatic fidelity for atom-dimer conversion system in stimulated Raman adiabatic passage. Acta Physica Sinica, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [17] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [18] Yan Bing, Pan Shou-Fu, Wang Zhi-Gang, Yu Jun-Hua. Dissociation of sulfur trimer S3:the nonadiabatic process. Acta Physica Sinica, 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [19] Huang Chun-Fu, Guo Ru, Liu Si-Min, Shu Qiang, Gao Yuan-Mei, Wan Da-Yun, Liu Zhao-Hong, Zhang Xiao-Hua, Lu Yi. Influence of dark irradiation on transition process from self-defocusing to self-focusing in LiNbO3:Fe crystals. Acta Physica Sinica, 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [20] Luo Sui-chu, Qin Da-cheng, Wu Zi-qin. THE STRUCTURAL CHANGES OF Au-Ge-Ni FILMS DURING HEATING. Acta Physica Sinica, 1982, 31(10): 1401-1404. doi: 10.7498/aps.31.1401
Metrics
  • Abstract views:  7588
  • PDF Downloads:  283
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2016
  • Accepted Date:  21 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map