搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合不连续系统同步转换过程中的多吸引子共存

杨科利

引用本文:
Citation:

耦合不连续系统同步转换过程中的多吸引子共存

杨科利

Synchronization transition with coexistence of attractors in coupled discontinuous system

Yang Ke-Li
PDF
导出引用
  • 本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.
    The studies of extended dynamics systems are relevant to the understanding of spatiotemporal patterns observed in diverse fields. One of the well-established models for such complex systems is the coupled map lattices, and several features of pattern formation including synchronization, unsynchronization, traveling waves and clustering synchronization are found. Among the above-mentioned patterns, chaotic synchronization has been intensively investigated in recent years. It has been demonstrated that two or more chaotic systems can be synchronized by linking them with mutual coupling or a common signal or some signals. Over the last decade, a number of theoretical methods have been presented to deal with this problem, such as the methods of master stability functions and eigenvalue analysis. While much effort has been devoted to the networks with different topological structures in continuous systems. The coupled discontinuous maps have been investigated with increasing interest in recent years, they showed that the complete synchronization in coupled discontinuous systems is more complicated than in coupled continuous systems. However, a similar problem of synchronization transition in coupled discontinuous systems is much less known.The synchronization transition in coupled discontinuous map lattices is studied. The average order parameter and maximal Lyapunov exponent are calculated to diagnose the synchronization of coupled piecewise maps. The results indicate that there exist the periodic clusters and the synchronization state, and a new transition style from periodic cluster states to complete synchronization states is found. The periodic cluster states consist of two kinds of periodic orbits: symmetric periodic orbits and asymmetric periodic orbits.Based on the pattern analysis, the common features of the patterns are constructed by the two periodic attractors, and the periodic orbit is an unstable periodic orbit of the isolate map. The discontinuities in a system can divide the phase space into individual zones of different dynamical features. The interactions between the local nonlinearity and the spatial coupling confine orbit into certain spaces and form a dynamic balance between two periodic clusters. The system can reach complete synchronization states when the balance is off. It is shown that synchronization transition of the coupled discontinuous map can exhibit the different processes, which depends on coupling strength. Four transition modes are found in coupled discontinuous map: 1) the transition, from the coexistence of chaotic synchronization and chaotic un-synchronization states to the coexistence of chaotic synchronization, chaotic un-synchronization, symmetric periodic orbits and asymmetric periodic orbits; 2) the transition from the coexistence of chaotic synchronization, chaotic un-synchronization, symmetric periodic orbits and asymmetric periodic orbits to the coexistence of chaotic synchronization, symmetric periodic orbits and asymmetric periodic orbits; 3) the transition from the coexistence of chaotic synchronization, symmetric periodic orbits and asymmetric periodic orbits to the coexistence of chaotic synchronization and symmetric periodic orbits; 4) the transition from the coexistence of chaotic synchronization and symmetric periodic orbits to the chaotic synchronization. Because the local dynamics has discontinuous points, the coupled system shows a riddle basin characteristic in the phase space, and the synchronization transition of coupled piecewise maps looks more complex than continuous system.
      通信作者: 杨科利, klyang@163.com
    • 基金项目: 国家自然科学基金(批准号:11547247)、陕西省教育厅科研计划项目(批准号:15JK1045)和宝鸡文理学院重点科研项目(批准号:ZK15028)资助的课题.
      Corresponding author: Yang Ke-Li, klyang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547247), the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 15JK1045), and the Science Foundation of Baoji University of Arts and Science of China (Grant No. ZK15028).
    [1]

    Bennet M, Schatz M F, Rockwood H, Wiesenfeld K 2002 Proc. Roy. Soc. London A 458 563

    [2]

    Li C, Chen L, Aihara K 2006 Phys. Biol. 3 37

    [3]

    Barnes H 1957 Anne. Biol. 33 85

    [4]

    Tatli H 2007 Int. J Climatol. 27 1171

    [5]

    Perlow L A 1999 Administrative Science Quarterly 44 57

    [6]

    Li M, Song H 2002 Acta Simulata Systematica Sinica 4 021

    [7]

    Tokuda H, Mercer C W 1989 ACM SIGOPS Operating Systems Review 23 29

    [8]

    Pikovsky A S, Rosenblum M G, Osipov G V 1997 Physica D 104 219

    [9]

    Van Vreeswijk C 1996 Phys. Rev. E 54 5522

    [10]

    Belykh V N, Belykh I V, Mosekilde E 2001 Phys. Rev. E 63 036216

    [11]

    Rosenblum M G, Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 4193

    [12]

    Rulkov N F, Sushchik M M, Tsimring L S 1995 Phys. Rev. E 51 980

    [13]

    Zhan M, Wang X, Gong X 2003 Phys. Rev. E 68 036208

    [14]

    Wang Q Y, Lu Q S, Wang H X 2005 Chin. Phys. 14 2189

    [15]

    Brede M 2010 Physica D 239 1759

    [16]

    Sun X, Lei J, Perc M, Kurths J, Chen G 2011 Chaos 21 016110

    [17]

    Gmez-Gardeńes J, Gmez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [18]

    Mohanty P K 2004 Phys. Rev. E 70 045202

    [19]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [20]

    Tyson J J, Chen K C, Novak B 2003 Curr. Opin. Cell Biol. 15 221

    [21]

    Liu Q, Wang J 2008 Neural Networks 19 558

    [22]

    Hahn H S, Nitzan A, Ortoleva P 1974 PNAS 71 4067

    [23]

    Chua L O 1992 The genesis of Chuas circuit Electronics Research Laboratory, College of Engineering, University of California

    [24]

    Heslot F, Baumberger T, Perrin B 1994 Phys. Rev. E 49 4973

    [25]

    Nordmark A B 1991 J. Sound. Vib. 145 279

    [26]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [27]

    Cencini M, Tessone C J, Torcini A 2008 Chaos 18 037125

    [28]

    Cheng X C, Yang K L, Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese) [程兴超, 杨科利, 屈世显 2014 63 140505]

    [29]

    Yang K L, Chen H Y, Du W W, Jin T, Qu S X 2014 Chin. Phys. B 23 070508

    [30]

    Yang K L, Wang X G, Qu S X 2015 Phys. Rev. E 92 022905

    [31]

    Yang K L, Wang C J 2015 Nonlinear Dynam. 79 377

    [32]

    Yang K L 2015 Acta Phys. Sin. 64 120502 (in Chinese) [杨科利 2015 64 120502]

    [33]

    Qu S X, Lu Y Z, Zhang L 2008 Chin. Phys. B 17 4418

    [34]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569

  • [1]

    Bennet M, Schatz M F, Rockwood H, Wiesenfeld K 2002 Proc. Roy. Soc. London A 458 563

    [2]

    Li C, Chen L, Aihara K 2006 Phys. Biol. 3 37

    [3]

    Barnes H 1957 Anne. Biol. 33 85

    [4]

    Tatli H 2007 Int. J Climatol. 27 1171

    [5]

    Perlow L A 1999 Administrative Science Quarterly 44 57

    [6]

    Li M, Song H 2002 Acta Simulata Systematica Sinica 4 021

    [7]

    Tokuda H, Mercer C W 1989 ACM SIGOPS Operating Systems Review 23 29

    [8]

    Pikovsky A S, Rosenblum M G, Osipov G V 1997 Physica D 104 219

    [9]

    Van Vreeswijk C 1996 Phys. Rev. E 54 5522

    [10]

    Belykh V N, Belykh I V, Mosekilde E 2001 Phys. Rev. E 63 036216

    [11]

    Rosenblum M G, Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 4193

    [12]

    Rulkov N F, Sushchik M M, Tsimring L S 1995 Phys. Rev. E 51 980

    [13]

    Zhan M, Wang X, Gong X 2003 Phys. Rev. E 68 036208

    [14]

    Wang Q Y, Lu Q S, Wang H X 2005 Chin. Phys. 14 2189

    [15]

    Brede M 2010 Physica D 239 1759

    [16]

    Sun X, Lei J, Perc M, Kurths J, Chen G 2011 Chaos 21 016110

    [17]

    Gmez-Gardeńes J, Gmez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [18]

    Mohanty P K 2004 Phys. Rev. E 70 045202

    [19]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [20]

    Tyson J J, Chen K C, Novak B 2003 Curr. Opin. Cell Biol. 15 221

    [21]

    Liu Q, Wang J 2008 Neural Networks 19 558

    [22]

    Hahn H S, Nitzan A, Ortoleva P 1974 PNAS 71 4067

    [23]

    Chua L O 1992 The genesis of Chuas circuit Electronics Research Laboratory, College of Engineering, University of California

    [24]

    Heslot F, Baumberger T, Perrin B 1994 Phys. Rev. E 49 4973

    [25]

    Nordmark A B 1991 J. Sound. Vib. 145 279

    [26]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [27]

    Cencini M, Tessone C J, Torcini A 2008 Chaos 18 037125

    [28]

    Cheng X C, Yang K L, Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese) [程兴超, 杨科利, 屈世显 2014 63 140505]

    [29]

    Yang K L, Chen H Y, Du W W, Jin T, Qu S X 2014 Chin. Phys. B 23 070508

    [30]

    Yang K L, Wang X G, Qu S X 2015 Phys. Rev. E 92 022905

    [31]

    Yang K L, Wang C J 2015 Nonlinear Dynam. 79 377

    [32]

    Yang K L 2015 Acta Phys. Sin. 64 120502 (in Chinese) [杨科利 2015 64 120502]

    [33]

    Qu S X, Lu Y Z, Zhang L 2008 Chin. Phys. B 17 4418

    [34]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569

  • [1] 丁大为, 王谋媛, 王金, 杨宗立, 牛炎, 王威. 电磁感应下分数阶神经网络动力学行为分析及应用.  , 2024, 73(10): 100502. doi: 10.7498/aps.73.20231792
    [2] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现.  , 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [3] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现.  , 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [4] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现.  , 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [5] 马召召, 杨庆超, 周瑞平. 一种基于摄动理论的不连续系统Lyapunov指数算法.  , 2021, 70(24): 240501. doi: 10.7498/aps.70.20210492
    [6] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步.  , 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [7] 许碧荣, 王光义. 忆感器文氏电桥振荡器.  , 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [8] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性.  , 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [9] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现.  , 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [10] 罗少轩, 何博侠, 乔爱民, 王艳春. 基于参数切换算法的混沌系统吸引子近似及其电路设计.  , 2015, 64(20): 200508. doi: 10.7498/aps.64.200508
    [11] 张建文, 任永华, 吴润衡, 冯涛. 非线性热弹耦合Sine-Gordon型系统的整体吸引子.  , 2012, 61(11): 110404. doi: 10.7498/aps.61.110404
    [12] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现.  , 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [13] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子.  , 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [14] 胡国四. 一类具有四翼吸引子的超混沌系统.  , 2009, 58(6): 3734-3741. doi: 10.7498/aps.58.3734
    [15] 于洪洁, 郑 宁. 非线性函数耦合的Chen吸引子网络的混沌同步.  , 2008, 57(8): 4712-4720. doi: 10.7498/aps.57.4712
    [16] 王发强, 刘崇新, 逯俊杰. 四维系统中多涡卷混沌吸引子的仿真研究.  , 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
    [17] 郝建红, 李 伟. 混沌吸引子在两个周期振子耦合下的相同步.  , 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
    [18] 禹思敏, 林清华, 丘水生. 四维系统中多涡卷混沌与超混沌吸引子的仿真研究.  , 2003, 52(1): 25-33. doi: 10.7498/aps.52.25
    [19] 丁晓玲, 王健, 王旭明, 何大韧. 一类不可逆保守系统中的混沌类吸引子.  , 2002, 51(3): 482-486. doi: 10.7498/aps.51.482
    [20] 谭 宁, 陈永红, 徐健学. 耦合帐篷映射混沌同步系统的筛形吸引域.  , 2000, 49(7): 1215-1220. doi: 10.7498/aps.49.1215
计量
  • 文章访问数:  5941
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-02-19
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map