Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synchronization transition with coexistence of attractors in coupled discontinuous system

Yang Ke-Li

Citation:

Synchronization transition with coexistence of attractors in coupled discontinuous system

Yang Ke-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The studies of extended dynamics systems are relevant to the understanding of spatiotemporal patterns observed in diverse fields. One of the well-established models for such complex systems is the coupled map lattices, and several features of pattern formation including synchronization, unsynchronization, traveling waves and clustering synchronization are found. Among the above-mentioned patterns, chaotic synchronization has been intensively investigated in recent years. It has been demonstrated that two or more chaotic systems can be synchronized by linking them with mutual coupling or a common signal or some signals. Over the last decade, a number of theoretical methods have been presented to deal with this problem, such as the methods of master stability functions and eigenvalue analysis. While much effort has been devoted to the networks with different topological structures in continuous systems. The coupled discontinuous maps have been investigated with increasing interest in recent years, they showed that the complete synchronization in coupled discontinuous systems is more complicated than in coupled continuous systems. However, a similar problem of synchronization transition in coupled discontinuous systems is much less known.The synchronization transition in coupled discontinuous map lattices is studied. The average order parameter and maximal Lyapunov exponent are calculated to diagnose the synchronization of coupled piecewise maps. The results indicate that there exist the periodic clusters and the synchronization state, and a new transition style from periodic cluster states to complete synchronization states is found. The periodic cluster states consist of two kinds of periodic orbits: symmetric periodic orbits and asymmetric periodic orbits.Based on the pattern analysis, the common features of the patterns are constructed by the two periodic attractors, and the periodic orbit is an unstable periodic orbit of the isolate map. The discontinuities in a system can divide the phase space into individual zones of different dynamical features. The interactions between the local nonlinearity and the spatial coupling confine orbit into certain spaces and form a dynamic balance between two periodic clusters. The system can reach complete synchronization states when the balance is off. It is shown that synchronization transition of the coupled discontinuous map can exhibit the different processes, which depends on coupling strength. Four transition modes are found in coupled discontinuous map: 1) the transition, from the coexistence of chaotic synchronization and chaotic un-synchronization states to the coexistence of chaotic synchronization, chaotic un-synchronization, symmetric periodic orbits and asymmetric periodic orbits; 2) the transition from the coexistence of chaotic synchronization, chaotic un-synchronization, symmetric periodic orbits and asymmetric periodic orbits to the coexistence of chaotic synchronization, symmetric periodic orbits and asymmetric periodic orbits; 3) the transition from the coexistence of chaotic synchronization, symmetric periodic orbits and asymmetric periodic orbits to the coexistence of chaotic synchronization and symmetric periodic orbits; 4) the transition from the coexistence of chaotic synchronization and symmetric periodic orbits to the chaotic synchronization. Because the local dynamics has discontinuous points, the coupled system shows a riddle basin characteristic in the phase space, and the synchronization transition of coupled piecewise maps looks more complex than continuous system.
      Corresponding author: Yang Ke-Li, klyang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547247), the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 15JK1045), and the Science Foundation of Baoji University of Arts and Science of China (Grant No. ZK15028).
    [1]

    Bennet M, Schatz M F, Rockwood H, Wiesenfeld K 2002 Proc. Roy. Soc. London A 458 563

    [2]

    Li C, Chen L, Aihara K 2006 Phys. Biol. 3 37

    [3]

    Barnes H 1957 Anne. Biol. 33 85

    [4]

    Tatli H 2007 Int. J Climatol. 27 1171

    [5]

    Perlow L A 1999 Administrative Science Quarterly 44 57

    [6]

    Li M, Song H 2002 Acta Simulata Systematica Sinica 4 021

    [7]

    Tokuda H, Mercer C W 1989 ACM SIGOPS Operating Systems Review 23 29

    [8]

    Pikovsky A S, Rosenblum M G, Osipov G V 1997 Physica D 104 219

    [9]

    Van Vreeswijk C 1996 Phys. Rev. E 54 5522

    [10]

    Belykh V N, Belykh I V, Mosekilde E 2001 Phys. Rev. E 63 036216

    [11]

    Rosenblum M G, Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 4193

    [12]

    Rulkov N F, Sushchik M M, Tsimring L S 1995 Phys. Rev. E 51 980

    [13]

    Zhan M, Wang X, Gong X 2003 Phys. Rev. E 68 036208

    [14]

    Wang Q Y, Lu Q S, Wang H X 2005 Chin. Phys. 14 2189

    [15]

    Brede M 2010 Physica D 239 1759

    [16]

    Sun X, Lei J, Perc M, Kurths J, Chen G 2011 Chaos 21 016110

    [17]

    Gmez-Gardeńes J, Gmez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [18]

    Mohanty P K 2004 Phys. Rev. E 70 045202

    [19]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [20]

    Tyson J J, Chen K C, Novak B 2003 Curr. Opin. Cell Biol. 15 221

    [21]

    Liu Q, Wang J 2008 Neural Networks 19 558

    [22]

    Hahn H S, Nitzan A, Ortoleva P 1974 PNAS 71 4067

    [23]

    Chua L O 1992 The genesis of Chuas circuit Electronics Research Laboratory, College of Engineering, University of California

    [24]

    Heslot F, Baumberger T, Perrin B 1994 Phys. Rev. E 49 4973

    [25]

    Nordmark A B 1991 J. Sound. Vib. 145 279

    [26]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [27]

    Cencini M, Tessone C J, Torcini A 2008 Chaos 18 037125

    [28]

    Cheng X C, Yang K L, Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese) [程兴超, 杨科利, 屈世显 2014 63 140505]

    [29]

    Yang K L, Chen H Y, Du W W, Jin T, Qu S X 2014 Chin. Phys. B 23 070508

    [30]

    Yang K L, Wang X G, Qu S X 2015 Phys. Rev. E 92 022905

    [31]

    Yang K L, Wang C J 2015 Nonlinear Dynam. 79 377

    [32]

    Yang K L 2015 Acta Phys. Sin. 64 120502 (in Chinese) [杨科利 2015 64 120502]

    [33]

    Qu S X, Lu Y Z, Zhang L 2008 Chin. Phys. B 17 4418

    [34]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569

  • [1]

    Bennet M, Schatz M F, Rockwood H, Wiesenfeld K 2002 Proc. Roy. Soc. London A 458 563

    [2]

    Li C, Chen L, Aihara K 2006 Phys. Biol. 3 37

    [3]

    Barnes H 1957 Anne. Biol. 33 85

    [4]

    Tatli H 2007 Int. J Climatol. 27 1171

    [5]

    Perlow L A 1999 Administrative Science Quarterly 44 57

    [6]

    Li M, Song H 2002 Acta Simulata Systematica Sinica 4 021

    [7]

    Tokuda H, Mercer C W 1989 ACM SIGOPS Operating Systems Review 23 29

    [8]

    Pikovsky A S, Rosenblum M G, Osipov G V 1997 Physica D 104 219

    [9]

    Van Vreeswijk C 1996 Phys. Rev. E 54 5522

    [10]

    Belykh V N, Belykh I V, Mosekilde E 2001 Phys. Rev. E 63 036216

    [11]

    Rosenblum M G, Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 4193

    [12]

    Rulkov N F, Sushchik M M, Tsimring L S 1995 Phys. Rev. E 51 980

    [13]

    Zhan M, Wang X, Gong X 2003 Phys. Rev. E 68 036208

    [14]

    Wang Q Y, Lu Q S, Wang H X 2005 Chin. Phys. 14 2189

    [15]

    Brede M 2010 Physica D 239 1759

    [16]

    Sun X, Lei J, Perc M, Kurths J, Chen G 2011 Chaos 21 016110

    [17]

    Gmez-Gardeńes J, Gmez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [18]

    Mohanty P K 2004 Phys. Rev. E 70 045202

    [19]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [20]

    Tyson J J, Chen K C, Novak B 2003 Curr. Opin. Cell Biol. 15 221

    [21]

    Liu Q, Wang J 2008 Neural Networks 19 558

    [22]

    Hahn H S, Nitzan A, Ortoleva P 1974 PNAS 71 4067

    [23]

    Chua L O 1992 The genesis of Chuas circuit Electronics Research Laboratory, College of Engineering, University of California

    [24]

    Heslot F, Baumberger T, Perrin B 1994 Phys. Rev. E 49 4973

    [25]

    Nordmark A B 1991 J. Sound. Vib. 145 279

    [26]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [27]

    Cencini M, Tessone C J, Torcini A 2008 Chaos 18 037125

    [28]

    Cheng X C, Yang K L, Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese) [程兴超, 杨科利, 屈世显 2014 63 140505]

    [29]

    Yang K L, Chen H Y, Du W W, Jin T, Qu S X 2014 Chin. Phys. B 23 070508

    [30]

    Yang K L, Wang X G, Qu S X 2015 Phys. Rev. E 92 022905

    [31]

    Yang K L, Wang C J 2015 Nonlinear Dynam. 79 377

    [32]

    Yang K L 2015 Acta Phys. Sin. 64 120502 (in Chinese) [杨科利 2015 64 120502]

    [33]

    Qu S X, Lu Y Z, Zhang L 2008 Chin. Phys. B 17 4418

    [34]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569

  • [1] Ding Da-Wei, Wang Mou-Yuan, Wang Jin, Yang Zong-Li, Niu Yan, Wang Wei. Dynamic behaviors analysis of fraction-order neural network under memristive electromagnetic induction. Acta Physica Sinica, 2024, 73(10): 100502. doi: 10.7498/aps.73.20231792
    [2] Quan Xu, Qiu Da, Sun Zhi-Peng, Zhang Gui-Zhong, Liu Song. Dynamic analysis and FPGA implementation of a fourth-order chaotic system with coexisting attractor. Acta Physica Sinica, 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [3] Qin Ming-Hong, Lai Qiang, Wu Yong-Hong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors. Acta Physica Sinica, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [4] Ding Da-Wei, Lu Xiao-Qi, Hu Yong-Bing, Yang Zong-Li, Wang Wei, Zhang Hong-Wei. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [5] Ma Zhao-Zhao, Yang Qing-Chao, Zhou Rui-Ping. Lyapunov exponent algorithm based on perturbation theory for discontinuous systems. Acta Physica Sinica, 2021, 70(24): 240501. doi: 10.7498/aps.70.20210492
    [6] Zheng Guang-Chao, Liu Chong-Xin, Wang Yan. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [7] Xu Bi-Rong, Wang Guang-Yi. Meminductive Wein-bridge chaotic oscillator. Acta Physica Sinica, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [8] Bao Han, Bao Bo-Cheng, Lin Yi, Wang Jiang, Wu Hua-Gan. Hidden attractor and its dynamical characteristic in memristive self-oscillating system. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [9] Ruan Jing-Ya, Sun Ke-Hui, Mou Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation. Acta Physica Sinica, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [10] Luo Shao-Xuan, He Bo-Xia, Qiao Ai-Min, Wang Yan-Chun. Approximations of chaotic attractors and its circuit design based on the parameter switching algorithm. Acta Physica Sinica, 2015, 64(20): 200508. doi: 10.7498/aps.64.200508
    [11] Zhang Jian-Wen, Ren Yong-Hua, Wu Run-Heng, Feng Tao. The global attractor of nonlinear thermoelastic coupled Sine-Gordon system. Acta Physica Sinica, 2012, 61(11): 110404. doi: 10.7498/aps.61.110404
    [12] Liu Zhong, Wu Hua-Gan, Bao Bo-Cheng. Scroll number and distribution control of attractor: system design and circuit realization. Acta Physica Sinica, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [13] Zhang Jian-Wen, Li Jin-Feng, Wu Run-Heng. Global attractor of strongly damped nonlinearthermoelastic coupled rod system. Acta Physica Sinica, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [14] Hu Guo-Si. A family of hyperchaotic systems with four-wing attractors. Acta Physica Sinica, 2009, 58(6): 3734-3741. doi: 10.7498/aps.58.3734
    [15] Yu Hong-Jie, Zheng Ning. Chaotic synchronization of network of Chen’s chaotic attractors using nonlinear coupling function. Acta Physica Sinica, 2008, 57(8): 4712-4720. doi: 10.7498/aps.57.4712
    [16] Wang Fa-Qiang, Liu Chong-Xin, Lu Jun-Jie. Emulation of multi-scroll chaotic attractors in four-dimensional systems. Acta Physica Sinica, 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
    [17] Hao Jian-Hong, Li Wei. Phase synchronization of R?ssler in two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
    [18] Yu Si-Min, Lin Qing-Hua, Qiu Shui-Sheng. Simulation investigation on multi-scroll chaotic and hyperchaotic attractors for four-dimensional systems. Acta Physica Sinica, 2003, 52(1): 25-33. doi: 10.7498/aps.52.25
    [19] Ding Xiao-Ling, Wang Jian, Wang Xu-Ming, He Da-Ren. . Acta Physica Sinica, 2002, 51(3): 482-486. doi: 10.7498/aps.51.482
    [20] TAN NING, CHEN YONG-HONG, XU JIAN-XUE. RIDDLED BASIN IN CHAOTIC SYNCHRONIZATION SYSTEM: LINEAR COUPLED STANDARD TENT MA PS. Acta Physica Sinica, 2000, 49(7): 1215-1220. doi: 10.7498/aps.49.1215
Metrics
  • Abstract views:  5944
  • PDF Downloads:  229
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2015
  • Accepted Date:  19 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map