-
基于绝热过程(火积)耗散极值原理, 分别在对流传热和复合传热(对流和辐射传热)边界条件下, 对轧钢加热炉壁变截面绝热层进行构形优化, 得到(火积)耗散率最小的绝热层最优构形. 结果表明: 与等截面绝热层相比, (火积)耗散率最小的变截面绝热层整体绝热性能更优. 热损失率最小和(火积)耗散率最小的绝热层最优构形是不同的. 热损失率最小的绝热层最优构形使得其能量损失减小, 而(火积)耗散率最小的绝热层最优构形使得其整体绝热性能提高. (火积)耗散率最小和最大温度梯度最小的变截面绝热层最优构形差别较小, 此时(火积)耗散率最小的绝热层最优构形在提高绝热层整体绝热性能的同时也提高了其热安全性. 基于(火积)理论的绝热层构形优化为绝热系统的优化设计提供了新的指导.Based on the entransy dissipation extremum principle for thermal insulation process, the constructal optimizations of a variable cross-sectional insulation layer of the steel rolling reheating furnace wall with convective and compound heat transfer (mixed convective and radiative heat transfer) boundary conditions are carried out. An optimal construct of the insulation layer with minimum entransy dissipation rate can be obtained. Results show that the global thermal insulation performance of the variable cross-sectional insulation layer at minimum entransy dissipation rate is better than that of the constant cross-sectional one. The optimal constructs of the insulation layer obtained based respectively on the minimizations of the entransy dissipation rate and heat loss rate are different. The optimal construct of the insulation layer at minimum heat loss rate leads to a reduction of the energy loss, and that at minimum entransy dissipation rate leads to an improvement of the global thermal insulation performance. The difference between the optimal constructs of the variable cross-sectional insulation layer based on the minimizations of the entransy dissipation rate and the maximum temperature gradient is small. This makes the global thermal insulation performance and thermal safety of the insulation layer improved simultaneously. The constructal optimization of the insulation layer based on entransy theory can provide some new guidelines for the optimal designs of the insulation systems.
-
Keywords:
- constructal theory /
- entransy dissipation rate minimization /
- variable cross-sectional insulation layer /
- generalized thermodynamic optimization
[1] Bejan A 1993 Int. J. Heat Mass Transfer 36 49
[2] Li D P, Chen L G, Sun F R 1995 Power System Engng. 11 29 (in Chinese) [李大鹏, 陈林根, 孙丰瑞 1995 电站系统工程 11 29]
[3] Kang D H, Lorente S, Bejan A 2013 Int. J. Energy Res. 37 153
[4] Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 3313
[5] Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2278
[6] Chen L G, Xie Z H, Sun F R 2011 Int. J. Therm. Sci. 50 1782
[7] Xie Z H, Chen L G, Sun F R 2014 Int. Comm. Heat Mass Transfer 54 141
[8] Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314
[9] Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516
[10] Chen L G 2012 Sci. China: Tech. Sci. 55 802
[11] Rocha L A O, Lorente S, Bejan A 2013 Constructal Law and the Unifying Principle of Design (Berlin: Spinger) pp1-321
[12] Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301
[13] Bejan A 2014 Sci. Rep. 4 4017
[14] Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[15] Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]
[16] Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406
[17] Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974
[18] Guo Z Y 2014 Energy 68 998
[19] Chen L G 2012 Chin. Sci. Bull. 57 4404
[20] Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65
[21] Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]
[22] Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]
[23] Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 62 234401]
[24] Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401
[25] Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[26] Feng H J, Chen L G, Xie Z H, Sun F R 2013 Sci. China: Tech. Sci. 56 299
[27] Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506
[28] Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513
[29] Cheng X T, Liang X G 2014 Energy Convers. Mgmt. 80 238
[30] Wu J, Guo Z Y 2014 Industrial & Engng. Chem. Res. 53 1274
[31] Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124
[32] Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982
[33] He Y L, Tao W Q 2014 Int. J. Heat Mass Transfer 74 196
[34] Feng H J, Chen L G, Xie Z H, Sun F R 2012 Sci. China: Tech. Sci. 55 3322
[35] Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26
[36] Feng H J, Chen L G, Xie Z H, Sun F R 2014 Chin. Sci. Bull. 59 2470
-
[1] Bejan A 1993 Int. J. Heat Mass Transfer 36 49
[2] Li D P, Chen L G, Sun F R 1995 Power System Engng. 11 29 (in Chinese) [李大鹏, 陈林根, 孙丰瑞 1995 电站系统工程 11 29]
[3] Kang D H, Lorente S, Bejan A 2013 Int. J. Energy Res. 37 153
[4] Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 3313
[5] Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2278
[6] Chen L G, Xie Z H, Sun F R 2011 Int. J. Therm. Sci. 50 1782
[7] Xie Z H, Chen L G, Sun F R 2014 Int. Comm. Heat Mass Transfer 54 141
[8] Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314
[9] Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516
[10] Chen L G 2012 Sci. China: Tech. Sci. 55 802
[11] Rocha L A O, Lorente S, Bejan A 2013 Constructal Law and the Unifying Principle of Design (Berlin: Spinger) pp1-321
[12] Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301
[13] Bejan A 2014 Sci. Rep. 4 4017
[14] Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[15] Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]
[16] Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406
[17] Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974
[18] Guo Z Y 2014 Energy 68 998
[19] Chen L G 2012 Chin. Sci. Bull. 57 4404
[20] Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65
[21] Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]
[22] Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]
[23] Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 62 234401]
[24] Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401
[25] Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[26] Feng H J, Chen L G, Xie Z H, Sun F R 2013 Sci. China: Tech. Sci. 56 299
[27] Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506
[28] Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513
[29] Cheng X T, Liang X G 2014 Energy Convers. Mgmt. 80 238
[30] Wu J, Guo Z Y 2014 Industrial & Engng. Chem. Res. 53 1274
[31] Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124
[32] Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982
[33] He Y L, Tao W Q 2014 Int. J. Heat Mass Transfer 74 196
[34] Feng H J, Chen L G, Xie Z H, Sun F R 2012 Sci. China: Tech. Sci. 55 3322
[35] Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26
[36] Feng H J, Chen L G, Xie Z H, Sun F R 2014 Chin. Sci. Bull. 59 2470
计量
- 文章访问数: 6512
- PDF下载量: 443
- 被引次数: 0