搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化

冯辉君 陈林根 谢志辉 孙丰瑞

引用本文:
Citation:

基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化

冯辉君, 陈林根, 谢志辉, 孙丰瑞

Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory

Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui
PDF
导出引用
  • 基于绝热过程(火积)耗散极值原理, 分别在对流传热和复合传热(对流和辐射传热)边界条件下, 对轧钢加热炉壁变截面绝热层进行构形优化, 得到(火积)耗散率最小的绝热层最优构形. 结果表明: 与等截面绝热层相比, (火积)耗散率最小的变截面绝热层整体绝热性能更优. 热损失率最小和(火积)耗散率最小的绝热层最优构形是不同的. 热损失率最小的绝热层最优构形使得其能量损失减小, 而(火积)耗散率最小的绝热层最优构形使得其整体绝热性能提高. (火积)耗散率最小和最大温度梯度最小的变截面绝热层最优构形差别较小, 此时(火积)耗散率最小的绝热层最优构形在提高绝热层整体绝热性能的同时也提高了其热安全性. 基于(火积)理论的绝热层构形优化为绝热系统的优化设计提供了新的指导.
    Based on the entransy dissipation extremum principle for thermal insulation process, the constructal optimizations of a variable cross-sectional insulation layer of the steel rolling reheating furnace wall with convective and compound heat transfer (mixed convective and radiative heat transfer) boundary conditions are carried out. An optimal construct of the insulation layer with minimum entransy dissipation rate can be obtained. Results show that the global thermal insulation performance of the variable cross-sectional insulation layer at minimum entransy dissipation rate is better than that of the constant cross-sectional one. The optimal constructs of the insulation layer obtained based respectively on the minimizations of the entransy dissipation rate and heat loss rate are different. The optimal construct of the insulation layer at minimum heat loss rate leads to a reduction of the energy loss, and that at minimum entransy dissipation rate leads to an improvement of the global thermal insulation performance. The difference between the optimal constructs of the variable cross-sectional insulation layer based on the minimizations of the entransy dissipation rate and the maximum temperature gradient is small. This makes the global thermal insulation performance and thermal safety of the insulation layer improved simultaneously. The constructal optimization of the insulation layer based on entransy theory can provide some new guidelines for the optimal designs of the insulation systems.
    • 基金项目: 国家重点基础研究发展计划(973)项目(批准号: 2012CB720405)和国家自然科学基金(批准号: 51176203, 51356001)资助的课题.
    • Funds: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2012CB720405), and the National Natural Science Foundation of China (Grant Nos. 51176203, 51356001).
    [1]

    Bejan A 1993 Int. J. Heat Mass Transfer 36 49

    [2]

    Li D P, Chen L G, Sun F R 1995 Power System Engng. 11 29 (in Chinese) [李大鹏, 陈林根, 孙丰瑞 1995 电站系统工程 11 29]

    [3]

    Kang D H, Lorente S, Bejan A 2013 Int. J. Energy Res. 37 153

    [4]

    Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 3313

    [5]

    Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2278

    [6]

    Chen L G, Xie Z H, Sun F R 2011 Int. J. Therm. Sci. 50 1782

    [7]

    Xie Z H, Chen L G, Sun F R 2014 Int. Comm. Heat Mass Transfer 54 141

    [8]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [9]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [10]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [11]

    Rocha L A O, Lorente S, Bejan A 2013 Constructal Law and the Unifying Principle of Design (Berlin: Spinger) pp1-321

    [12]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [13]

    Bejan A 2014 Sci. Rep. 4 4017

    [14]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [15]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [16]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [17]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [18]

    Guo Z Y 2014 Energy 68 998

    [19]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [20]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [21]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [22]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [23]

    Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 62 234401]

    [24]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [25]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506

    [26]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Sci. China: Tech. Sci. 56 299

    [27]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [28]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [29]

    Cheng X T, Liang X G 2014 Energy Convers. Mgmt. 80 238

    [30]

    Wu J, Guo Z Y 2014 Industrial & Engng. Chem. Res. 53 1274

    [31]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [32]

    Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982

    [33]

    He Y L, Tao W Q 2014 Int. J. Heat Mass Transfer 74 196

    [34]

    Feng H J, Chen L G, Xie Z H, Sun F R 2012 Sci. China: Tech. Sci. 55 3322

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26

    [36]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Chin. Sci. Bull. 59 2470

  • [1]

    Bejan A 1993 Int. J. Heat Mass Transfer 36 49

    [2]

    Li D P, Chen L G, Sun F R 1995 Power System Engng. 11 29 (in Chinese) [李大鹏, 陈林根, 孙丰瑞 1995 电站系统工程 11 29]

    [3]

    Kang D H, Lorente S, Bejan A 2013 Int. J. Energy Res. 37 153

    [4]

    Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 3313

    [5]

    Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2278

    [6]

    Chen L G, Xie Z H, Sun F R 2011 Int. J. Therm. Sci. 50 1782

    [7]

    Xie Z H, Chen L G, Sun F R 2014 Int. Comm. Heat Mass Transfer 54 141

    [8]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [9]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [10]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [11]

    Rocha L A O, Lorente S, Bejan A 2013 Constructal Law and the Unifying Principle of Design (Berlin: Spinger) pp1-321

    [12]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [13]

    Bejan A 2014 Sci. Rep. 4 4017

    [14]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [15]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [16]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [17]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [18]

    Guo Z Y 2014 Energy 68 998

    [19]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [20]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [21]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 60 118103]

    [22]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 62 134401]

    [23]

    Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 62 234401]

    [24]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [25]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506

    [26]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Sci. China: Tech. Sci. 56 299

    [27]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [28]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [29]

    Cheng X T, Liang X G 2014 Energy Convers. Mgmt. 80 238

    [30]

    Wu J, Guo Z Y 2014 Industrial & Engng. Chem. Res. 53 1274

    [31]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [32]

    Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982

    [33]

    He Y L, Tao W Q 2014 Int. J. Heat Mass Transfer 74 196

    [34]

    Feng H J, Chen L G, Xie Z H, Sun F R 2012 Sci. China: Tech. Sci. 55 3322

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26

    [36]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Chin. Sci. Bull. 59 2470

  • [1] 胡敏丽, 房凡, 樊群超, 范志祥, 李会东, 付佳, 谢锋. NO+离子系统热力学性质的理论研究.  , 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [2] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验.  , 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [3] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究.  , 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究.  , 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [5] 魏益焕. Kiselev黑洞的热力学性质和物质吸积特性.  , 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [6] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较.  , 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [7] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的+形高导热构形通道实验研究.  , 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [8] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究.  , 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [9] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化.  , 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [10] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响.  , 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [11] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化.  , 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] 宋海峰, 刘海风. 金属铍热力学性质的理论研究.  , 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [14] 刘录新. 相对论热力学向量理论对Schwarzschild场中物质系统特性的研究.  , 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [15] 欧发. 耗散系统的准热力学模型.  , 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [16] 欧发. 光学耗散系统的准热力学模型及其在光学双稳性相变问题上的应用.  , 1992, 41(8): 1222-1233. doi: 10.7498/aps.41.1222
    [17] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正.  , 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [18] 徐继海. CeCu2Si2和UBe13的超导理论(Ⅱ)——热力学量的计算.  , 1988, 37(1): 111-118. doi: 10.7498/aps.37.111
    [19] 孟宪振, 蒲富恪. 热力学的推迟格临函数对铁磁共振峰宽理论的应用.  , 1961, 17(5): 214-221. doi: 10.7498/aps.17.214
    [20] 程开甲;李正中. 内耗的热力学研究_代位合金在有序或无序态的内耗理论.  , 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
计量
  • 文章访问数:  6512
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-29
  • 修回日期:  2014-09-02
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map