Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of the ultrafast phase evolution of the ejected material generated during femtosecond laser ablation of aluminum by the coherent light illuminated schlieren apparatus

Yang Jing-Hui Zhang Nan Zhu Xiao-Nong

Citation:

Investigation of the ultrafast phase evolution of the ejected material generated during femtosecond laser ablation of aluminum by the coherent light illuminated schlieren apparatus

Yang Jing-Hui, Zhang Nan, Zhu Xiao-Nong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel phase measurement method based on the schlieren apparatus is proposed, and the ultrafast phase evolution of the ejected material generated during the femtosecond laser ablation of aluminum is experimentally studied by this method. Different from the conventional schlieren technique, the phase measurement method presented in this work uses coherent light as the illuminating light. The specimen's phase under-test is derived with the help of the interference between the light which irradiates the surroundings of the specimen and the light which transmits through the specimen and diffracts on the razor edge of the schlieren apparatus. One remarkable merit of this method is that it can clearly exhibit the specimen's phase variation of mπ or 2mπ (m is an integer). The ultrafast process of the ejected material generated during the 5.4 J/cm2, 50 fs laser pulses ablation of the aluminum target is investigated by this novel phase measurement method and the pump-probe technique. Results show that the ejected material is composed of three sequentially appearing regions with different phase evolving processes, which are respectively corresponding to the ejected plasma-state material, the successively ejected material normal to the target surface and the shock wave. It is also found that during the time interval of 0–9.0 ns after the femtosecond pulse strikes the target, the phase of the ejected plasma-state material varies beyond π due to the expansion and recombination, but the phase variation of the successively ejected material does not exceed π.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111, 61137001), the Tianjin Natural Science Foundation, China (Grant No. 10JCZDGX35100), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034), and the Fundamental Research Funds for the Central Universities.
    [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • [1] Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin. Illumination homogenization of highly coherent light source based on phase modulation. Acta Physica Sinica, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [3] Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [4] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [5] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [6] Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Physica Sinica, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [7] Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai. Pump-orientation-probe technique and its applications. Acta Physica Sinica, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [8] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [9] Li Gao-Fang, Ma Guo-Hong, Ma Hong, Chu Feng-Hong, Cui Hao-Yang, Liu Wei-Jing, Song Xiao-Jun, Jiang You-Hua, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [10] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [11] Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang. Ptychographic iterative engine with the incoherent illumination. Acta Physica Sinica, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] Zhang Tian-Tian, Yi Shi-He, Zhu Yang-Zhu, He Lin. Reconstruction and calibration on aero-optical wavefront aberration based on Background oriented schlieren based wavefront sensing. Acta Physica Sinica, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [13] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [14] Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection. Acta Physica Sinica, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [15] Sheng Xue-Li, Lu Jia, Ling Qing, Xu Jiang, Dong Wei-Jia. Design of multistatic sonar space-time code detection signal and time reversal copy-correlation detection technology. Acta Physica Sinica, 2014, 63(5): 054303. doi: 10.7498/aps.63.054303
    [16] Liu Wei, Chen Dan-Ni, Liu Shuang-Long, Niu Han-Ben. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy and detection limitanalysis. Acta Physica Sinica, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [17] Liu Guo-Zhong, Zhou Zhe-Hai, Qiu Jun, Wang Xiao-Fei, Liu Gui-Li, Wang Rui-Kang. Application of amplitude and phase registration in blood flow imaging using optical coherence tomography. Acta Physica Sinica, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [18] Li Fei, Rao Chang-Hui. High resolution imaging technique based on phase diversity hybrid method. Acta Physica Sinica, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [19] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [20] TU JIN-HONG, ZHAN LI. DIFFRACTION AND INTERFERENCE EFFECT OF DOUBLE GRATINGS WITH A ROTATION-ANGLE UNDER PARTIALLY COHERENT ILLUMINATION. Acta Physica Sinica, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
Metrics
  • Abstract views:  6237
  • PDF Downloads:  826
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2013
  • Accepted Date:  26 March 2013
  • Published Online:  05 July 2013

/

返回文章
返回
Baidu
map