搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分辨光学相干层析成像技术与材料检测应用

唐弢 赵晨 陈志彦 李鹏 丁志华

引用本文:
Citation:

超高分辨光学相干层析成像技术与材料检测应用

唐弢, 赵晨, 陈志彦, 李鹏, 丁志华

Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials

Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua
PDF
导出引用
  • 本文报道了一种超高分辨率谱域光学相干层析成像(SD-OCT)系统. 该系统基于超连续谱激光光源并截取部分光谱作为宽带光源, 其中心波长为665 nm, 光谱半高全宽(FWHM) 230 nm. 系统轴向分辨率0.9 μm, 轴向扫描速率28600行/秒, 横向分辨率3.9 μm, 横向视场1 mm, 最大成像深度0.6 mm(空气中). 利用研制的超高分辨率SD-OCT系统, 对不同型号的工业砂纸精细结构进行了成像, 并与普通SD-OCT的成像结果进行对比, 充分展示了研制系统在材料无损检测中优势.
    Since many industrial materials have micro or submicro structures on the surface or subsurface, utrahigh-resolution is required in the inspection of these materials. Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the scale of a few microns. We have been investigating an ultrahigh-resolution spectral-domain optical coherence tomography (SD-OCT) system using supercontinuum sources (SC) in free space. The effective SC spectrum has a full width at half maximum of 230 nm centered around 665 nm, and the imaging setup has an ultrahigh axial resolution of 0.9 μm in air, and a lateral resolution of 3.9 μm, with the system measurement range being 0.6 mm in axial direction. At a 50 μm axial position, the sensitivity can be 63 dB with 28600 axial scans per second at 2048 pixels per axial scan. Images of polystyrene microspheres solution with an average diameter of 5 μm and different sizes of industrial abrasive papers are presented to illustrate the performance of the system.
      通信作者: 丁志华, zh_ding@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61335003, 61275196, 61327007, 11404285, 61475143), 国家高技术研究发展计划(863计划)(批准号: 2015AA020515), 浙江省自然科学基金 (批准号: LY14F050007), 中央高校基本科研业务费专项资金(批准号: 2014QNA5017)和教育部留学回国人员科研启动基金资助的课题.
      Corresponding author: Ding Zhi-Hua, zh_ding@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61335003, 61275196, 61327007, 11404285, 61475143), the National High Technology Research and Development Program of China (Grant No. 2015AA020515), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY14F050007), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2014QNA5017), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, ChangW, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Drexler W, Fujimoto J G 2008 Optical coherence tomography: technology and applications (Berlin: Springer) pp1-72

    [3]

    Wojtkowski M, Leitgeb R, Kowalczyk A, Fercher A F, Bajraszewski T 2002 J. Biomed. Opt. 7 457

    [4]

    Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J 2004 Opt. Express 12 367

    [5]

    Cense B, Nassif N, Chen T, Pierce M, Yun S H, Park B, Bouma B, Tearney G 2004 Opt. Lett. 12 2435

    [6]

    Chen Y, Huang S W, Aguirre A D, Fujimoto J G 2007 Opt. Lett. 32 1971

    [7]

    Yadav R, Lee K S, Rolland J P, Zavislan J M, Aquavella J V, Yoon G 2011 Biomed. Opt. Express 2 3037

    [8]

    Fernández E J, Hermann B, Považay B, Unterhuber A, Sattmann H, Hofer B, Ahnelt P, Drexler W 2008 Opt. Express 16 11083

    [9]

    Bayleyegn M D, Makhlouf H, Crotti C, Plamann K, Dubois A 2012 Opt. Commun. 285 5564

    [10]

    Drexler W 2004 J. Biomed. Opt. 9 47

    [11]

    Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A 2004 Opt. Express 12 2156

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 63 194201]

    [13]

    Prykäri T, Czajkowski J, Alarousu E, Myllylä R 2010 Opt. Rev. 17 218

    [14]

    Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D 2005 Opt. Express 13 1015

    [15]

    Heise B, Schausberger S E, Häuser S, Plank B, Salaberger D, Leiss-Holzinger E, Stifter D 2012 Opt. Fiber. Technol. 18 403

    [16]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471

    [17]

    Xue P, Fujimoto J G 2008 Chin. Sci. Bull. 53 1963

    [18]

    Safrani A, Abdulhalim I 2012 Opt. Lett. 37 458

    [19]

    Yan Y Z, Ding Z H, Wang L, Shen Y 2013 Acta Phys. Sin. 62 164204 (in Chinese) [颜扬治, 丁志华, 王玲, 沈毅 2013 62 164204]

    [20]

    Wang K, Ding Z H 2008 Chin. Opt. Lett. 6 902

    [21]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [22]

    Wojtkowski M, Srinivasan V, Ko T, Fujimoto J G, Kowalczyk A, Duker J 2004 Opt. Express 12 2404

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, ChangW, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Drexler W, Fujimoto J G 2008 Optical coherence tomography: technology and applications (Berlin: Springer) pp1-72

    [3]

    Wojtkowski M, Leitgeb R, Kowalczyk A, Fercher A F, Bajraszewski T 2002 J. Biomed. Opt. 7 457

    [4]

    Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J 2004 Opt. Express 12 367

    [5]

    Cense B, Nassif N, Chen T, Pierce M, Yun S H, Park B, Bouma B, Tearney G 2004 Opt. Lett. 12 2435

    [6]

    Chen Y, Huang S W, Aguirre A D, Fujimoto J G 2007 Opt. Lett. 32 1971

    [7]

    Yadav R, Lee K S, Rolland J P, Zavislan J M, Aquavella J V, Yoon G 2011 Biomed. Opt. Express 2 3037

    [8]

    Fernández E J, Hermann B, Považay B, Unterhuber A, Sattmann H, Hofer B, Ahnelt P, Drexler W 2008 Opt. Express 16 11083

    [9]

    Bayleyegn M D, Makhlouf H, Crotti C, Plamann K, Dubois A 2012 Opt. Commun. 285 5564

    [10]

    Drexler W 2004 J. Biomed. Opt. 9 47

    [11]

    Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A 2004 Opt. Express 12 2156

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 63 194201]

    [13]

    Prykäri T, Czajkowski J, Alarousu E, Myllylä R 2010 Opt. Rev. 17 218

    [14]

    Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D 2005 Opt. Express 13 1015

    [15]

    Heise B, Schausberger S E, Häuser S, Plank B, Salaberger D, Leiss-Holzinger E, Stifter D 2012 Opt. Fiber. Technol. 18 403

    [16]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471

    [17]

    Xue P, Fujimoto J G 2008 Chin. Sci. Bull. 53 1963

    [18]

    Safrani A, Abdulhalim I 2012 Opt. Lett. 37 458

    [19]

    Yan Y Z, Ding Z H, Wang L, Shen Y 2013 Acta Phys. Sin. 62 164204 (in Chinese) [颜扬治, 丁志华, 王玲, 沈毅 2013 62 164204]

    [20]

    Wang K, Ding Z H 2008 Chin. Opt. Lett. 6 902

    [21]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [22]

    Wojtkowski M, Srinivasan V, Ko T, Fujimoto J G, Kowalczyk A, Duker J 2004 Opt. Express 12 2404

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头.  , 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [3] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像.  , 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [4] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计.  , 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [5] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术.  , 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [6] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [7] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统.  , 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [8] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法.  , 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [9] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像.  , 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [10] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法.  , 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [11] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统.  , 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [12] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [13] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究.  , 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [14] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [15] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究.  , 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [16] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究.  , 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [17] 商在明, 丁志华, 王玲, 刘勇. 基于光程编码与相干合成的三维超分辨术.  , 2011, 60(12): 124204. doi: 10.7498/aps.60.124204
    [18] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究.  , 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [19] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像.  , 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [20] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化.  , 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
计量
  • 文章访问数:  8437
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-03-24
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map