Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pump-orientation-probe technique and its applications

Chen Cong Liang Pan Hu Rong-Rong Jia Tian-Qing Sun Zhen-Rong Feng Dong-Hai

Citation:

Pump-orientation-probe technique and its applications

Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The pump-orientation-probe technique is a recently-developed novel transient measurement technique, which has unique advantages in probing the ultrafast dynamics of charge separation in colloidal nanostructures. In this technique, the linearly-polarized pump pulse is applied to generating electron-hole pairs, and the circularly-polarized spin-orientation pulse is used to establish the electron spin polarization, whose dynamics is detected by monitoring the polarization change of the linearly-polarized probe pulse. Initially, the wavefunctions of the electron-hole pairs are spatially overlapped, and the lifetime of the electron spin is short because of the strong electron-hole exchange interaction. If the electrons or the holes are trapped by the surfaces of the colloidal nanostructures, the spatial separations between the electrons and the holes weaken the exchange effect, and thus the lifetime of the electron spin is largely lengthened. The evolutions of electrons and holes from their spatial overlap to separation can be revealed by monitoring the change of the electron spin dynamics. Based on the introduction of the conventional two-beam carrier pump-probe and spin pump-probe techniques, the features and optical layout of three-beam pump-orientation-probe technique are described in depth. The application to probing negative or positive photocharging in CdS colloidal quantum dots is taken for example and discussed in depth. Compared with the conventional time-resolved absorption or time-resolved fluorescence spectroscopy, the pump-orientation-probe technique can detect the dynamics of trapping electrons or holes and distinguish the type of charging state easily and directly, which has particular advantages under the high-power excitation condition. Further outlook of the three-beam pump-orientation-probe technique is also presented finally.
      Corresponding author: Feng Dong-Hai, dhfeng@phy.ecnu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA123401), the National Key Research and Development Program of China (Grant No. 2016YFB0501601), the National Natural Science Foundation of China (Grant Nos. 11374099, 11474097, 11727810, 61720106009, 11474096), the Shanghai Municipal Science and Technology Commission, China (Grant No. 16520721200), and the 111 Project, China (Grant No. B12024).
    [1]

    Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677

    [2]

    Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513

    [3]

    Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405

    [4]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 61 197801]

    [5]

    Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [7]

    Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177

    [8]

    Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604

    [9]

    Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602

    [10]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [11]

    Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]

    [12]

    Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310

    [13]

    Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844

    [14]

    Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337

    [15]

    Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053

    [16]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [17]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [18]

    Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011

    [19]

    Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026

    [20]

    Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740

    [21]

    Kambhampati P 2011 J. Phys. Chem. C 115 22089

    [22]

    Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574

    [23]

    Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406

    [24]

    Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523

    [25]

    Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 61 207202]

    [26]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [27]

    Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 65 127802]

    [28]

    Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325

    [29]

    Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436

    [30]

    Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 64 157201]

    [31]

    Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 66 046802]

    [32]

    Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060

    [33]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [34]

    Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408

    [35]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [36]

    Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802

    [37]

    Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661

    [38]

    Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288

  • [1]

    Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677

    [2]

    Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513

    [3]

    Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405

    [4]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 61 197801]

    [5]

    Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [7]

    Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177

    [8]

    Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604

    [9]

    Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602

    [10]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [11]

    Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]

    [12]

    Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310

    [13]

    Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844

    [14]

    Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337

    [15]

    Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053

    [16]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [17]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [18]

    Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011

    [19]

    Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026

    [20]

    Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740

    [21]

    Kambhampati P 2011 J. Phys. Chem. C 115 22089

    [22]

    Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574

    [23]

    Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406

    [24]

    Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523

    [25]

    Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 61 207202]

    [26]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [27]

    Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 65 127802]

    [28]

    Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325

    [29]

    Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436

    [30]

    Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 64 157201]

    [31]

    Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 66 046802]

    [32]

    Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060

    [33]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [34]

    Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408

    [35]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [36]

    Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802

    [37]

    Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661

    [38]

    Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288

  • [1] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [2] Zhao Ling-Yi, Liu Jin-Lei, Jiang Tao, Lang Yue, Zhao Zeng-Xiu. Envelope effect of Rydberg States Generation in Strong Laser Pulses. Acta Physica Sinica, 2024, 73(23): 1-6. doi: 10.7498/aps.73.20241222
    [3] He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng. Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields. Acta Physica Sinica, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [4] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [5] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [6] Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner. First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters. Acta Physica Sinica, 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [7] Huang Rui, Li Chun, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Ultrafast spin dynamics in double-magnetic-center endohedral fullerene Y2C2@C82-C2(1). Acta Physica Sinica, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [8] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [9] Qin Chao-Chao, Cui Ming-Huan, Song Di-Di, He Wei. Ultrafast multiexciton Auger recombination of CdSeS. Acta Physica Sinica, 2019, 68(10): 107801. doi: 10.7498/aps.68.20190291
    [10] Ye Shu-Ji,  Li Chuan-Zhao,  Zhang Jia-Hui,  Tan Jun-Jun,  Luo Yi. Research progress of molecular structure and dynamics of biological water. Acta Physica Sinica, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [11] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [12] Li Gao-Fang, Ma Guo-Hong, Ma Hong, Chu Feng-Hong, Cui Hao-Yang, Liu Wei-Jing, Song Xiao-Jun, Jiang You-Hua, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [13] Li Xia, Feng Dong-Hai, Pan Xian-Qun, Jia Tian-Qing, Shan Lu-Fan, Deng Li, Sun Zhen-Rong. Room-temperature ultrafast spin dynamics in colloidal CdSe quantum dots. Acta Physica Sinica, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [14] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [16] Xi Shan-Bin, Lu Wu, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing, Wu Xue. Quantitative separation of radiation induced charges for gate controlled later PNP bipolar transistors. Acta Physica Sinica, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [17] Li Chun, Yang Fan, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin dynamics research on magnetic nanostructures. Acta Physica Sinica, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [18] Jin Hua, Liu Shu, Zhang Zhen-Zhong, Zhang Li-Gong, Zheng Zhu-Hong, Shen De-Zhen. Exciton tunnelling in (CdZnTe,ZnSeTe)/ZnTe complex quantum wells. Acta Physica Sinica, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [19] Sun Tao, K.S.Wong, Zhang Wei-Li, Chai Lu, Wang Qing-Yue, K.L.Wong. Time-resolved study of the random lasing in ZnO powder. Acta Physica Sinica, 2003, 52(9): 2127-2130. doi: 10.7498/aps.52.2127
    [20] REN LI-YONG, YAO BAO-LI, HOU XUN, YI WEN-HUI, WANG MIN-QIANG. EXPERIMENT AND THEORY ON DIFFRACTION FROM LASER-INDUCED PHASE-HOLE IN POLYMER FI LM. Acta Physica Sinica, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
Metrics
  • Abstract views:  6390
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2018
  • Accepted Date:  02 March 2018
  • Published Online:  05 May 2018

/

返回文章
返回
Baidu
map