-
Laser sheet imaging, also called planar laser imaging, is one of the most versatile optical imaging techniques and has been frequently used in several different areas. However, when applied to the limited operating space and strong light scattering media, the light originating from indirect reflections, multiple scattering and surrounding backgrounds can produce error especially in intensity-ratio based measurements. This work is motivated by these challenges, with the overall aim of making laser sheet imaging technique applicable for the study of eliminating the stray light interference. Therefore a novel two-dimensional imaging technique named structured laser illumination planar imaging (SLIPI) is developed based on planar laser imaging but uses a sophisticated illumination scheme i.e. spatial intensity modulation, to differentiate between the intensity contribution arising from useful signals and that from stray light. By recording and dealing with images, the SLIPI method can suppress the diffuse light and retain the useful signals. In this paper, we first use the MATLAB software to simulate the phase-shift SLIPI method, and the results show that the stray light interference can be eliminated completely. Furthermore, the phase-shift SLIPI is combined with the liquid solution (Rhodamine B solution) laser induced fluorescence (LIF) approach to imagine the concentration distribution. By recording three images, between which this encoding is changed noticeably only for the useful LIF signals, the phase-shift SLIPI method is evidenced to be able to remove the diffuse light contribution, thus improving and enhancing the visualization quality. The instantaneous SLIPI images of rapidly moving samples, a key feature to study dynamic liquid solution diffusion behavior, are also acquired. The lock-in amplifier SLIPI technique is then experimentally studied under Rhodamine B diffused solution, and the phase-shift SLIPI method can remove the unwanted background interferences and achieve the significant improvements in terms of pronounced concentration distribution within the Rhodamine B solution. The SLIPI technique is relatively inexpensive: the cost does not exceed the cost of an ordinary laser sheet arrangement noticeably, and it can combine with several other linear imaging techniques, such as Rayleigh scattering, particle image velocimetry and laser-induced phosphorescence. [1] Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar
[2] Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar
[3] Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar
[4] Adrian R J 2005 Exp. Fluids 39 159Google Scholar
[5] 陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65
Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65
[6] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 62 190601Google Scholar
Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar
[7] Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar
[8] Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar
[9] 徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar
Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar
[10] Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615
[11] Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar
[12] Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar
[13] Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar
[14] Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471
[15] Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar
[16] Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar
[17] Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar
[18] Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar
[19] Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar
[20] Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar
[21] Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar
[22] Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar
[23] Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar
[24] Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar
[25] Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar
[26] Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489
-
图 2 基于结构光照明技术的激光诱导发光图像测量装置(A1, 5×扩束镜; RG, Ronchi光栅; AR, 自动旋转台; GS, 玻璃片(5.3 mm); LS, 片光系统; A, 光阑; RB, 罗丹明B溶液; PF, 滤光片)
Figure 2. LIF imaging setup based on the SLIPI technique (A1, 5 × beam expander; RG, Ronchi grating; AR, automatic rotary table; GS, glass sheet (5.3 mm); LS, light system; A, aperture slot; RB, Rhodamine B solution; PF, fliter).
图 3 PS-SLIPI方法仿真计算全过程 (a) 调制振幅项A的值; (b) 无光栅调制时的强度值SNG = A(R) + B1(R) + B2(R); (c) 光栅调制后的强度值SC; (d) LA-SLIPI计算后的振幅相对误差值dA/A = (A1 – A)/A, 截止频率fc = 0.005 Hz; (e) PS-SLIPI计算后的振幅误差值dA/A = AA – A, n = 3; (f) PS-SLIPI计算后的干扰分量误差值dB = BB – B, n = 3
Figure 3. Simulation process of the PS-SLIPI method: (a) The modulated amplitude value, A; (b) the intensity without grating modulation, SNG = A(R) + B1(R) + B2(R); (c) the intensity with grating modulation, SC; (d) the relative error of modulated amplitude value, A, calculated by LA-SLIPI method, dA = (A1 – A)/A, fc = 0.005 Hz; (e) the error of modulated amplitude value, A, calculated by PS-SLIPI method, dA = AA – A, n = 3; (f) the error of interference components calculated by PS-SLIPI method, dB = BB – B, n = 3.
图 5 (a) 三种不同测试环境下的原始LIF图像; (b) 光栅调制LIF图像; (c) PS-SLIPI方法处理后的调制振幅(A)分布图像
Figure 5. (a) Conventional (raw data) LIF images without grating modulation in three different measurement cases; (b) LIF images with grating modulation; (c) images of modulated amplitude value, A, calculated by phase shifting SLIPI method.
表 1 两种SLIPI技术实验参数
Table 1. Experimental parameters of two SLIPI technique.
背景分类 激光输出能量 相机曝光时间 相机增益 罗丹明B溶液浓度 图像正弦调制周期/像素 相位移动SLIPI技术 Case 1 100 mW 0.025 s 30 稳态溶液:1 × 107 mol/L 0.058593 Case 2 100 mW 0.025 s 30 稳态溶液:1 × 107 mol/L 0.058593 Case 3 100 mW 0.025 s 30 稳态溶液:1 × 107 mol/L 0.058593 基于锁相放大原理的SLIPI技术 Case 4 100 mW 0.025 s 30 非稳态扩散溶液: 将1 ×
106 mol/L溶液注入到1 ×
107 mol/L溶液.0.144536 -
[1] Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar
[2] Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar
[3] Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar
[4] Adrian R J 2005 Exp. Fluids 39 159Google Scholar
[5] 陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65
Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65
[6] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 62 190601Google Scholar
Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar
[7] Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar
[8] Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar
[9] 徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar
Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar
[10] Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615
[11] Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar
[12] Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar
[13] Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar
[14] Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471
[15] Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar
[16] Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar
[17] Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar
[18] Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar
[19] Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar
[20] Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar
[21] Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar
[22] Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar
[23] Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar
[24] Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar
[25] Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar
[26] Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489
Catalog
Metrics
- Abstract views: 8592
- PDF Downloads: 61
- Cited By: 0