搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

L型石墨纳米结的热输运

鲍志刚 陈元平 欧阳滔 杨凯科 钟建新

引用本文:
Citation:

L型石墨纳米结的热输运

鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新

Thermal transport in L-shaped graphene nano-junctions

Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin
PDF
导出引用
  • 利用非平衡格林函数方法研究了由半无限长扶手椅型和锯齿型边界石墨纳米带连接而成的L型石墨纳米结的热输运性质.结果表明,L型石墨纳米结的热导依赖于L型石墨纳米结的夹角和石墨纳米带的宽度.在L型石墨纳米结的夹角从30°增加到90°再增加到150°过程中,其热导显著增大.夹角为90°的L型石墨纳米结的热导随着扶手椅型纳米带宽度增加时,在低温区热导随着宽度的增大而降低,在高温区热导随宽度的增大而升高.对于夹角为150°的L型石墨纳米结,其热导无论是在低温区还是在高温区都随着锯齿型纳米带宽度的增加而降低.利用声子透射谱对这些热输运现象进行了合理的解释.研究结果阐明了不同L型石墨纳米结中的热输运机理,为设计基于石墨纳米结的热输运器件提供了重要的物理模型和理论依据.
    By using nonequilibrium Green’s function method, the thermal transport properties of L-shaped graphene nano-junctions consisting of a semi-infinite armchair-edged nanoribbon and a semi-infinite zigzag-edged nanoribbon were studied. It is shown that the thermal conductance of the L-shaped graphene nano-junctions depends on the included angles and the widths of the graphene nanoribbons. As the angle of L-shaped graphene nano-junctions increases from 30° to 90° and further to 150°, the thermal conductance obviously increases. For the right-angle L-shape graphene nano-junction, the thermal conductance undergoes a transition with the increasing of the widths of the armchair nanoribbons. The thermal conductance decreases at low temperature region and increases at high temperature region. Meanwhile the thermal conductance of L-shape graphene nano-junction with included angle 150° decreases by increasing the widths of zigzag-edged nanoribbons in both low and high temperature regions. These thermal transport phenomena can be reasonably explained by analyzing the phonon transmission coefficient. We illustrate the mechanisms of thermal transport for different L-shaped graphene nano-junctions. The results provide significant physical models and theoretical basis for designing the thermal devices based on the graphene nano-junctions.
    • 基金项目: 国家自然科学基金(批准号:51006086, 11074213)、高等学校博士学科点专项科研基金(批准号:200805301001)、湖南省高校创新平台开放基金(批准号:09K034)、湖南省教育厅科研基金(批准号:09C956)和湖南省研究生科研创新项目(批准号:CX2010B253) 资助的课题.
    [1]

    Chen J H, Jang C, Xiao S, Ishigani M, Fuhrer M S 2008 Nature Nanotech. 3 206

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin. 58 S306 (in Chinese) [黄良锋、李延龄、倪美燕、王贤龙、张国仁、曾 雉 2009 58 S306]

    [6]

    Geima A K, Novoselov K S 2007 Nature Mater. 6 183

    [7]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [8]

    Luo T, Zhu W, Shi Q W, Wang X P 2008 Acta Phys. Sin. 57 3775 (in Chinese) [罗 涛、朱 伟、石勤伟、王晓平 2008 57 3775]

    [9]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [10]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600

    [11]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛 2005 54 4251]

    [12]

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7815 (in Chinese) [唐 超、吉 璐、孟利军、孙立忠、张凯旺、钟建新 2009 58 7815]

    [13]

    Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y 2005 Phys. Rev. B 71 193406

    [14]

    Li A H, Zhang K W, Meng L J, Li J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 4356 (in Chinese) [李爱华、张凯旺、孟利军、李 俊、刘文亮、钟建新 2008 57 4356]

    [15]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [16]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

    [17]

    Chen Y P, Xie Y E, Sun L Z, Zhong J X 2008 Appl. Phys. Lett. 93 092104

    [18]

    Chen Y P, Xie Y E, Zhong J X 2008 Phys. Lett. A 372 5928

    [19]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [20]

    Zhang Z Z, Wu Z H, Chang K, Peeters F M 2009 Nanotechnology 20 415203

    [21]

    Chen Y P, Xie Y E, Wei X L, Sun L Z, Zhong J X 2010 Solid State Communications 150 675

    [22]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, Lü L 2009 Acta phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]

    [23]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [24]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [25]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [26]

    Jiang J W, Wang J S, Li B W 2009 Phys. Rev. B 79 205418

    [27]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [29]

    Pop E, Mann D, Cao J, Wang Q, Goodson K, Dai H J 2005 Phys. Rev. Lett. 95 155505

    [30]

    Prasher R 2010 Science 328 185

    [31]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [32]

    Lan J H, Wang J S, Gan C K, Chin S K 2009 Phys. Rev. B 79 115401

    [33]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [34]

    Jiang J W, Wang J S, Li B W 2009 Phys. Rev. B 79 205418

    [35]

    Yang N, Zhang G, Li B W 2009 Appl. Phys. Lett. 95 033107

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Eur. Phys. Lett. 88 28002

    [37]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [38]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [39]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [40]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [41]

    Mingo N 2006 Phys. Rev. B 74 125402

    [42]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [43]

    Wang J S, Wang J, Lü J T 2008 Eur. Phys. J. B 62 381

    [44]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851

  • [1]

    Chen J H, Jang C, Xiao S, Ishigani M, Fuhrer M S 2008 Nature Nanotech. 3 206

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin. 58 S306 (in Chinese) [黄良锋、李延龄、倪美燕、王贤龙、张国仁、曾 雉 2009 58 S306]

    [6]

    Geima A K, Novoselov K S 2007 Nature Mater. 6 183

    [7]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [8]

    Luo T, Zhu W, Shi Q W, Wang X P 2008 Acta Phys. Sin. 57 3775 (in Chinese) [罗 涛、朱 伟、石勤伟、王晓平 2008 57 3775]

    [9]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [10]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600

    [11]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛 2005 54 4251]

    [12]

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7815 (in Chinese) [唐 超、吉 璐、孟利军、孙立忠、张凯旺、钟建新 2009 58 7815]

    [13]

    Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y 2005 Phys. Rev. B 71 193406

    [14]

    Li A H, Zhang K W, Meng L J, Li J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 4356 (in Chinese) [李爱华、张凯旺、孟利军、李 俊、刘文亮、钟建新 2008 57 4356]

    [15]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [16]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

    [17]

    Chen Y P, Xie Y E, Sun L Z, Zhong J X 2008 Appl. Phys. Lett. 93 092104

    [18]

    Chen Y P, Xie Y E, Zhong J X 2008 Phys. Lett. A 372 5928

    [19]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [20]

    Zhang Z Z, Wu Z H, Chang K, Peeters F M 2009 Nanotechnology 20 415203

    [21]

    Chen Y P, Xie Y E, Wei X L, Sun L Z, Zhong J X 2010 Solid State Communications 150 675

    [22]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, Lü L 2009 Acta phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]

    [23]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [24]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [25]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [26]

    Jiang J W, Wang J S, Li B W 2009 Phys. Rev. B 79 205418

    [27]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [29]

    Pop E, Mann D, Cao J, Wang Q, Goodson K, Dai H J 2005 Phys. Rev. Lett. 95 155505

    [30]

    Prasher R 2010 Science 328 185

    [31]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [32]

    Lan J H, Wang J S, Gan C K, Chin S K 2009 Phys. Rev. B 79 115401

    [33]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [34]

    Jiang J W, Wang J S, Li B W 2009 Phys. Rev. B 79 205418

    [35]

    Yang N, Zhang G, Li B W 2009 Appl. Phys. Lett. 95 033107

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Eur. Phys. Lett. 88 28002

    [37]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [38]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [39]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [40]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [41]

    Mingo N 2006 Phys. Rev. B 74 125402

    [42]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [43]

    Wang J S, Wang J, Lü J T 2008 Eur. Phys. J. B 62 381

    [44]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星. 并苯分子结的热电性质.  , 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [4] 申开波, 刘英光, 李鑫, 李亨宣. 石墨烯纳米网中的声子干涉效应.  , 2023, 72(12): 123102. doi: 10.7498/aps.72.20230361
    [5] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文. 低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题.  , 2023, 72(23): 234401. doi: 10.7498/aps.72.20231546
    [6] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [7] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿.  , 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [8] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [9] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响.  , 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [10] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [11] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 .  , 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [12] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导.  , 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [13] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [14] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控.  , 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [15] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [16] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导.  , 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性.  , 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [18] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析.  , 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [19] 赵 俊, 申彩霞, 周 放, 熊季午. 磁场对La2-xSrxCuO4单晶热导的影响研究.  , 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
    [20] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究.  , 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
计量
  • 文章访问数:  8607
  • PDF下载量:  925
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-28
  • 修回日期:  2010-07-09
  • 刊出日期:  2011-01-05

/

返回文章
返回
Baidu
map