-
Nanoimprint lithography has the advantages of low-cost, high-throughput, ultrahigh resolution, which could make it one of the next generation lithography technologies. However, the bubble-defect is always a problem which may damage the duplicate patterns, so it is an urgent issue to propose effective solutions. A novel methods, which is suitable for compressional gas cushion press nanoimprint lithography in gas atmosphere and could prevent gas from entering the gap between mold and substrate, is presented here. The annular plate capillary gap formed between the smooth substrate and the prominent O-ring processed by etching the original mold would be filled with the fluid medium. The capillary liquid bridge between the O-ring and substrate produces a closed cavity. The stiction induced by adhesion force and the capillary force induced by air-liquid surface tension could resist the compressed gas and avoid the bubble defect. The effective widths of the prominent O-ring, which are different for various fluids with different surface properties, are deduced by theory analysis. The analysis results provide theoretical basis for the preparation of the mold.
-
Keywords:
- nanoimprint lithography /
- prominent O-ring /
- capillary liquid bridge /
- stiction
[1] Chou S Y, Krauss P R, Renstrom P J 1995 Appl. Phys. Lett. 67 3114
[2] Chen L M, Guo Y F, Guo X, Tang W H 2006 Acta Phys. Sin. 55 6511 (in Chinese) [陈雷明, 郭艳峰, 郭熹, 唐为华 2006 55 6511]
[3] Wang Q, Hiroshima H 2010 Jpn. J. Appl. Phys. 49 06GL04
[4] Chang J H, Yang S Y 2003 Microsys. Technol. 10 76
[5] Hiroshima H, Atobe H, Wang Q, Youn S W 2010 Jpn. J. Appl. Phys. 49 06GL01-1
[6] Fuchs A, Bender M, Plachetka U, Hermanns U, Kurz H 2005 J. Vac. Sci. Technol. B 23 2925
[7] Komvopoulos K 1996 Wear 200 305
[8] Komvopoulos K 2003 J. Adhes. Sci. Technol. 17 477
[9] Xiong Y, Zhang X J, Zhang X H, Wen S Z 2009 Acta Phys. Sin. 58 1826 (in Chinese) [熊毅, 张向军, 张晓昊, 温诗铸 2009 58 1826]
[10] Fan H, Gao Y X 2001 J. Appl. Phys. 90 5904
[11] Zhang W M, Meng G 2005 J. Mech. Strength 27 855 (in Chinese) [张文明, 孟光 2005 机械强度 27 855]
[12] He G, Muser M H, Robbins M O 1999 Science 284 1650
[13] Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 54 2202]
[14] Qian L M, Luo J B, Wen S Z, Xiao X D 2000 Acta Phys. Sin. 49 2247 (in Chinese) [钱林茂, 雒建斌, 温诗铸, 萧旭东 2000 49 2247]
-
[1] Chou S Y, Krauss P R, Renstrom P J 1995 Appl. Phys. Lett. 67 3114
[2] Chen L M, Guo Y F, Guo X, Tang W H 2006 Acta Phys. Sin. 55 6511 (in Chinese) [陈雷明, 郭艳峰, 郭熹, 唐为华 2006 55 6511]
[3] Wang Q, Hiroshima H 2010 Jpn. J. Appl. Phys. 49 06GL04
[4] Chang J H, Yang S Y 2003 Microsys. Technol. 10 76
[5] Hiroshima H, Atobe H, Wang Q, Youn S W 2010 Jpn. J. Appl. Phys. 49 06GL01-1
[6] Fuchs A, Bender M, Plachetka U, Hermanns U, Kurz H 2005 J. Vac. Sci. Technol. B 23 2925
[7] Komvopoulos K 1996 Wear 200 305
[8] Komvopoulos K 2003 J. Adhes. Sci. Technol. 17 477
[9] Xiong Y, Zhang X J, Zhang X H, Wen S Z 2009 Acta Phys. Sin. 58 1826 (in Chinese) [熊毅, 张向军, 张晓昊, 温诗铸 2009 58 1826]
[10] Fan H, Gao Y X 2001 J. Appl. Phys. 90 5904
[11] Zhang W M, Meng G 2005 J. Mech. Strength 27 855 (in Chinese) [张文明, 孟光 2005 机械强度 27 855]
[12] He G, Muser M H, Robbins M O 1999 Science 284 1650
[13] Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 54 2202]
[14] Qian L M, Luo J B, Wen S Z, Xiao X D 2000 Acta Phys. Sin. 49 2247 (in Chinese) [钱林茂, 雒建斌, 温诗铸, 萧旭东 2000 49 2247]
Catalog
Metrics
- Abstract views: 6309
- PDF Downloads: 522
- Cited By: 0