-
The solar cells based on different solvent blends of poly(3-hexylthiophene) (P3HT) and -phenyl C61-butyric acid methyl ester (PCBM) as acceptors are fabricated. Annealing treatment effects on the performances of solar cells based on different solvent blend systems are analyzed by UV-vis absorption spectroscopy and photoluminescence (PL) spectroscopy. The results show that high boiling point solvent leads to an enhanced P3HT ordering in the P3HT:PCBM blend system, and causes an increased incident light absorption and PL spectrum, which contributes to the enhancement of device performance. After 130 ℃ thermal annealing, The UV-Vis absorption, PL spectrum and the performance of the device are further enhanced. The performance of the device prepared with low boiling point chloroform solvent increases obviously after thermal annealing. The solar cell prepared with chlorobenzene solvent after 130 ℃ thermal annealing achieves an open circuit voltage(Voc)of 0.57 V, short circuit current density(Isc)of 8.74 mA/cm2, fill factor (FF ) of 59.2% and power conversion efficiency (PCE) of 2.95% under 100 mW/cm2 air-mass 1.5 solar simulator illumination.
-
Keywords:
- annealing treatment /
- different solvents /
- solar cell /
- performance
[1] Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789
[2] Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709
[3] Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307
[4] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1
[5] He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377
[6] Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674
[7] Yu H Z, Peng J B 2008 Organic Electronic 9 1022
[8] Sang G Y , Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302
[9] Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136
[10] Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601
[11] Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 58 669]
[12] Ma W, Yang C, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617
[13] Padinger F, Rittberger R S, Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[14] Inoue K, Ulbricht R, Madakasira P C, Sampson W M, Lee S, Gutierrez J, Ferraris J, Zakhidov A A 2005 Synthetic Metals 154 41
[15] Moule A J, Meerholz K 2009 Adv. Funct. Mater. 19 3082
[16] Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143
[17] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864
[18] Yu H Z 2010 Synth. Met. 160 2505
[19] Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 57 3898]
[20] Yu H Z, Wen Y X 2011 Acta Phys. Sin. 60 (in Chinese) (in Chinese)[於黄忠、温源鑫 2011 60 ] (被录用)
[21] Chirvase D, Hummelen J C, Dyakonov V 2004 Nanotechnology 15 1317
[22] Zeng T W, Lin Y Y, Lo H H, Chen C W, Chen C H, Liou S C, Huang H Y, Su W F 2006 Nanotechnology 17 5387
[23] Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O 2006 Thin Solid Films 511 483
[24] Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci N S 2004 Adv. Funct. Mater. 14 1005
-
[1] Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789
[2] Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709
[3] Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307
[4] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1
[5] He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377
[6] Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674
[7] Yu H Z, Peng J B 2008 Organic Electronic 9 1022
[8] Sang G Y , Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302
[9] Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136
[10] Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601
[11] Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 58 669]
[12] Ma W, Yang C, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617
[13] Padinger F, Rittberger R S, Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[14] Inoue K, Ulbricht R, Madakasira P C, Sampson W M, Lee S, Gutierrez J, Ferraris J, Zakhidov A A 2005 Synthetic Metals 154 41
[15] Moule A J, Meerholz K 2009 Adv. Funct. Mater. 19 3082
[16] Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143
[17] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864
[18] Yu H Z 2010 Synth. Met. 160 2505
[19] Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 57 3898]
[20] Yu H Z, Wen Y X 2011 Acta Phys. Sin. 60 (in Chinese) (in Chinese)[於黄忠、温源鑫 2011 60 ] (被录用)
[21] Chirvase D, Hummelen J C, Dyakonov V 2004 Nanotechnology 15 1317
[22] Zeng T W, Lin Y Y, Lo H H, Chen C W, Chen C H, Liou S C, Huang H Y, Su W F 2006 Nanotechnology 17 5387
[23] Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O 2006 Thin Solid Films 511 483
[24] Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci N S 2004 Adv. Funct. Mater. 14 1005
Catalog
Metrics
- Abstract views: 7761
- PDF Downloads: 612
- Cited By: 0