-
Orbitronic devices have attracted considerable interest due to their unique advantage of independence from strong spin-orbit coupling. Light metal chromium (Cr), with high orbital Hall conductivity, exhibits significant potential for application in orbit-spintronic devices. In this study, we present experimental verification of the inverse orbital Hall effect (IOHE) in Cr thin films and systematically investigate the underlying physical mechanisms of orbital-to-charge current conversion. The Cr/Ni and Pt/Ni heterostructures were fabricated on Al2O3 substrates via magnetron sputtering. Terahertz time-domain spectroscopy was employed to measure the terahertz emission signal. The Cr/Ni heterostructures exhibits the same positive terahertz polarity as the ISHE-dominant Pt/Ni heterostructures, despite the Cr layer owing negative spin Hall angle, which confirms the IOHE of Cr/Ni heterostructure. In the Cr/Ni heterostructures, femtosecond laser excitation generates spin current in the ferromagnetic Ni layer, which is converted into orbital current via its spin-orbit coupling. This orbital current propagates into the Cr layer where it is transformed into charge current through the IOHE. Furthermore, increasing the Cr thickness (2-40 nm) weakens the terahertz emission of Cr/Ni heterostructures due to enhanced optical absorption of Cr layers reducing spin current generation in Ni layers. However, optimizing Ni thickness (3-10 nm) significantly enhances the terahertz emission by improving the spin-orbital conversion efficiency. This work provides experimental evidence for IOHE in Cr films and demonstrates the crucial role of ferromagnetic layer engineering in spin-to-orbit conversion efficiency, offering innovative perspectives for the design and performance optimization of orbitronic devices.
-
Keywords:
- Light material Cr film /
- Inverse orbital Hall effect /
- Terahertz
-
[1] Choi Y-G, Jo D, Ko K-H, Go D, Kim K-H, Park H G, Kim C, Min B-C, Choi G-M, Lee H-W 2023 Nature 619 52
[2] Go D, Jo D, Kim C, Lee H-W 2018 Phys. Rev. Lett. 121 086602
[3] Jo D, Go D, Lee H-W 2018 Phys. Rev. B 98 214405
[4] Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037
[5] Go D, Jo D, Kim K-W, Lee S, Kang M-G, Park B-G, Blügel S, Lee H-W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701
[6] Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405
[7] Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429
[8] Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703
[9] Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745
[10] Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113
[11] Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601
[12] Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117
[13] Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001
[14] Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H-W, Ando K 2023 Commun. Phys. 6 32
[15] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483
[16] Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001
[17] Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901
[18] Lee S, Kang M-G, Go D, Kim D, Kang J-H, Lee T, Lee G-H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K-J, Lee K-J, Park B-G 2021 Commun. Phys. 4 234
[19] Guo Y, Zhang Y, Lv W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408
[20] Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502
[21] Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901
[22] Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274-10281
[23] Go D, Lee H-W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435
[24] Lee D, Go D, Park H-J, Jeong W, Ko H-W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K-J, Park B-G, Min B-C, Koo H C, Lee H-W, Lee O, Lee K-J 2021 Nat. Commun. 12 6710
[25] Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702
[26] Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28
[27] Kumar S, Kumar S 2023 Nat. Commun. 14 8185
[28] Xu Y, Zhang F, Fert A, Jaffres H-Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043
[29] Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568
[30] Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132
[31] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 arxiv:1610.07020
[32] Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554
Metrics
- Abstract views: 40
- PDF Downloads: 2
- Cited By: 0