搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹金属线波导传输特性实验研究及模拟分析

徐振 罗曼 李吉宁 刘龙海 徐德刚

引用本文:
Citation:

太赫兹金属线波导传输特性实验研究及模拟分析

徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚

Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides

Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang
PDF
HTML
导出引用
  • 太赫兹波介于微波与红外之间, 当前太赫兹波主要在自由空间中传输, 金属线波导以低损耗、低色散等突出的传输特性被广泛关注. 本研究首先根据太赫兹波在不同金属线表面的趋肤深度选择铜线作为研究对象, 然后基于太赫兹时域光谱系统搭建可调节式金属线波导传输特性测试光路, 采集到通过不同半径、不同长度、不同端口状态的单/双铜线传输的时域信号, 最后利用有限元方法对不同半径、不同形变程度的单/双根铜线在空气域的传输特性进行仿真. 实验结果表明, 传输损耗会随着铜线长度的增加而增加, 金属线越细传输速度越慢, 端口形态对传输特性的影响不如长度变化对传输特性的影响明显, 双金属线越粗传输速度越快. 仿真结果表明, 太赫兹波在单根金属线上传输时, 电场主要分布在金属线表面, 金属线越细表面等离激元的模场面积越小; 当金属线形变成椭圆时, 模场主要分布在长轴两端; 当太赫兹波在双金属线中传输时, 模场主要分布在两根金属线中间, 且距离越远模场面积越小. 本研究结合实验与仿真分析方法对单、双金属线的太赫兹传输特性进行研究, 为后续开发高效太赫兹金属波导提供参考.
    Terahertz waves are between microwave and infrared, and currently, terahertz waves are mainly transmitted in free space. Metal wire waveguides have been widely studied due to their outstanding transmission characteristics such as low loss and low dispersion. In this study, copper wires are selected as the research samples based on the skin depth of terahertz waves on different metal wire surfaces. An adjustable metal wire waveguide transmission characteristic testing optical path is studied based on the terahertz time-domain spectroscopy system. The time-domain signals transmitted through single/double copper wires with different radii, lengths, and port states are collected. Then, the finite element method is used to analyze the transmission characteristics of single/double copper wires with different radii, lengths, and port states, and the transmission characteristics of single/double copper wires with different degrees of deformation in the air domain are simulated. The experimental results indicate that the transmission loss increases with copper wire length increasing, and the thinner the metal wire, the slower the transmission speed is. The influence of port shape on transmission characteristics is not so significant as that of length variation. The thicker the bimetallic wire, the faster the transmission speed is. The simulation results show that when terahertz waves are transmitted on a single metal wire, the electric field is mainly distributed on the surface of the metal wire, and the finer the metal wire, the smaller the mode field area of the surface plasmon is. When the metal line becomes elliptical, the mode field is mainly distributed on both ends of the major axis; When terahertz waves are transmitted in bimetallic wires, the mode field is mainly distributed between the two wires, and the farther the distance, the smaller the mode field area is. In this work, the terahertz transmission characteristics of single wires and bimetallic wires are studied by combining experimental method and simulation analysis, providing a reference for the subsequent development of efficient terahertz metal waveguides.
      通信作者: 李吉宁, jiningli@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U22A20123, 62175182, 62275193, U22A20353)资助的课题.
      Corresponding author: Li Ji-Ning, jiningli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A20123, 62175182, 62275193, U22A20353).
    [1]

    Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945

    [2]

    Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar

    [3]

    格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 72 184101Google Scholar

    Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar

    [4]

    Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar

    [5]

    Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163

    [6]

    陶磊 2021 中国安全防范技术与应用 110 11Google Scholar

    Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar

    [7]

    Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar

    [8]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [9]

    张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 73 026102Google Scholar

    Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar

    [10]

    王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar

    Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar

    [11]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 72 173201Google Scholar

    Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [12]

    Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar

    [13]

    Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162

    [14]

    王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241

    Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241

    [15]

    刘燕 2019 博士学位论文(成都: 电子科技大学)

    Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [16]

    Wang K L, Mittleman D 2004 Nature 432 376Google Scholar

    [17]

    Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar

    [18]

    Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1

    [19]

    李爽 2013 硕士学位论文 (上海: 上海大学)

    Li S 2013 M. S. Thesis (Shanghai: Shanghai University

    [20]

    Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [21]

    Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar

    [22]

    Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar

    [23]

    高华 2016 博士学位论文(上海: 上海大学)

    Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    钟任斌 2012 博士学位论文(成都: 电子科技大学)

    Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China

  • 图 1  五种常见金属在太赫兹波段的趋肤深度随频率的变化关系

    Fig. 1.  Frequency dependent relationship of skin depth of five common metals in the terahertz band.

    图 2  太赫兹波导传输特性测试系统原理图

    Fig. 2.  Schematic diagram of terahertz waveguide transmission characteristic testing system.

    图 3  太赫兹波导时域传输特性测试系统

    Fig. 3.  Time domain transmission characteristics testing system for terahertz waveguides.

    图 4  铜线样品实物图 (a)不同长度铜线样品; (b)不同直径铜线样品; (c)不同端口的铜线样品; (d)双铜线样品

    Fig. 4.  Physical image of copper wire sample: (a) Copper wire samples of different lengths; (b) copper wire samples of different diameters; (c) copper wire samples of different ports; (d) double copper wire sample.

    图 5  不同长度铜线样品传输的太赫兹时域信号

    Fig. 5.  Terahertz time-domain signals transmitted by copper wire samples of different lengths.

    图 6  不同直径铜线样品传输的太赫兹信号 (a) 时域信号; (b) 信号相移图

    Fig. 6.  Time domain signals of terahertz signals transmitted by copper wire samples with different diameters: (a) Time domain signal; (b) signal phase shift diagram.

    图 7  不同端口状态铜线样品传输的太赫兹时域信号 (a) 直径为1.6 mm铜线传输的太赫兹时域信号; (b) 直径为1.8 mm铜线传输的太赫兹时域信号; (c) 两种端口铜线传输的太赫兹时域相移

    Fig. 7.  Terahertz time-domain signals transmitted by copper wire samples with different port states: (a) Terahertz time-domain signals transmitted by copper wire with a diameter of 1.6 mm; (b) terahertz time-domain signal transmitted by a copper wire with a diameter of 1.8 mm; (c) terahertz time-domain phase shift in copper wire transmission with two different ports.

    图 8  双金属线太赫兹时域传输特性 (a) 测试时样品状态; (b) 双金属线传输的太赫兹时域信号

    Fig. 8.  Terahertz time-domain transmission characteristics of bimetallic wires: (a) Sample state during testing; (b) terahertz time-domain signals transmitted by bimetallic wire lines.

    图 9  半径400 μm金属线横截面模场分布 (a) 圆形截面上Er分布; (b) Ez强度分布; (c) Er强度沿径向变化曲线

    Fig. 9.  Mode field distribution on the cross-section of a metal wire with a radius of 400 m: (a) Er distribution on a circular cross-section; (b) Ez intensity distribution; (c) Er intensity variation curve along the radial direction.

    图 10  频率为0.5 THz时金属线表面模场面积分布

    Fig. 10.  Distribution of surface mode field area of metal wire at frequency of 0.5 THz.

    图 11  椭圆金属线传输特性 (a) 椭圆金属线模场分布; (b) 品质因数变化趋势

    Fig. 11.  Transmission characteristics of elliptical metal lines: (a) Mode field distribution of elliptical metal lines; (b) trend of quality factor changes.

    图 12  椭圆金属线截面周长不变时传输特性 (a) 品质因数变化曲线; (b) 模场面积变化曲线

    Fig. 12.  Transmission characteristics: (a) Quality factor variation curve of elliptical metal wire with constant cross-sectional perimeter; (b) mode field area variation curve.

    图 13  双金属线波导模型

    Fig. 13.  Model of bimetallic waveguide.

    图 14  双金属线波导模场分布 (a) 双金属线波导截面半轴变化; (b) 双金属线波导距离变化; (c) 双金属线波导半径变化

    Fig. 14.  Distribution of mode field in bimetallic waveguide: (a) Half axis variation of cross-section of bimetallic waveguide; (b) distance variation of bimetallic waveguide; (c) changes in the radius of bimetallic waveguide.

    Baidu
  • [1]

    Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945

    [2]

    Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar

    [3]

    格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 72 184101Google Scholar

    Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar

    [4]

    Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar

    [5]

    Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163

    [6]

    陶磊 2021 中国安全防范技术与应用 110 11Google Scholar

    Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar

    [7]

    Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar

    [8]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [9]

    张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 73 026102Google Scholar

    Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar

    [10]

    王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar

    Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar

    [11]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 72 173201Google Scholar

    Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [12]

    Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar

    [13]

    Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162

    [14]

    王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241

    Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241

    [15]

    刘燕 2019 博士学位论文(成都: 电子科技大学)

    Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [16]

    Wang K L, Mittleman D 2004 Nature 432 376Google Scholar

    [17]

    Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar

    [18]

    Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1

    [19]

    李爽 2013 硕士学位论文 (上海: 上海大学)

    Li S 2013 M. S. Thesis (Shanghai: Shanghai University

    [20]

    Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [21]

    Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar

    [22]

    Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar

    [23]

    高华 2016 博士学位论文(上海: 上海大学)

    Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    钟任斌 2012 博士学位论文(成都: 电子科技大学)

    Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究.  , 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [5] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [6] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用.  , 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强.  , 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量.  , 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [14] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [15] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究.  , 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [16] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [17] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究.  , 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [19] 陈华, 汪力. 金属导线偶合THz表面等离子体波.  , 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱.  , 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  1816
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-03-18
  • 上网日期:  2024-04-09
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map