Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A high-capacity 1-K cryogenic system pre-cooled by pulse tube cryocooler

LIU Xuming ZHA Kuifan MA Shuai HAN Liming XIE Xiaolin GUO Weijie PAN Changzhao

Citation:

A high-capacity 1-K cryogenic system pre-cooled by pulse tube cryocooler

LIU Xuming, ZHA Kuifan, MA Shuai, HAN Liming, XIE Xiaolin, GUO Weijie, PAN Changzhao
cstr: 32037.14.aps.74.20250181
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A 1-K cryogenic system can provide a stable and necessary low-temperature environment for some fields such as quantum computing, condensed matter physics research, and cryogenic scientific instruments. Specifically, in the field of basic research, 1 K is an ideal condition for studying quantum phenomena in low-temperature physics, such as quantum Hall effect and topological phase transition; in the field of technical applications, 1 K is a necessary condition for some quantum devices, such as superconducting quantum interferometers and single-photon detectors, to achieve high-sensitivity operation; in the field of ultra-low temperature technology, 1 K is the pre-cooling stage of refrigeration technologies, such as dilution refrigerators, and is also the basis for further achieving mK temperature ranges and lower temperatures. At present, in most of domestic 1-K systems, GM (Gifford-McMahon) cryocoolers are used for pre-cooling. These systems encounter some difficulties in achieving lower vibration control, lower electrical noise interference, lower pre-cooling temperature, and higher liquefaction efficiency. The 1-K systems based on pulse tube cryocoolers pre-cooling have inherent advantages in solving these problems. In this work, a 4-K GM-type pulse tube cryocooler is first developed by using a domestic helium compressor and a developed rotary valve, and the cold-end heat exchanger and the room-temperature phase shifters are redesigned in order to achieve a minimum cooling temperature of 2.14 K, and provide 1.5 W at 4.2 K and 45 W at 45 K cooling capacity simultaneously. With the home-made pulse tube cryocooler as the pre-cooling stage, a 1-K cryogenic system is further constructed. By designing key components such as JT flow resistance, combined thermal switch, and anti-superflow structure, a minimum cooling temperature of 1.1 K is achieved, with a cooling capacity of 100 mW at 1.6 K. This study lays an important foundation for subsequently developing dilution refrigerators with larger cooling capacity.
      Corresponding author: PAN Changzhao, pancz@iqasz.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0721303), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2024A1515012045), and the Science and Technology Program of Shenzhen, China (Grant No. RCBS20221008093120048).
    [1]

    Zhao Z Y, Wang C 2019 Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press) p233

    [2]

    李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊 2023 72 190702Google Scholar

    Li K, Wang Y N, Liu P, Yu F Q, Dai W, Shen J 2023 Acta Phys. Sin. 72 190702Google Scholar

    [3]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [4]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [5]

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese) [郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛 2024 73 230701]Google Scholar

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese)Google Scholar

    [6]

    Guan X, Fan J, Bian Y B, Cheng Z G, Ji Z Q 2024 Chin. Phys. B 33 070701Google Scholar

    [7]

    Jahromi A E, Miller F K 2014 Cryogenics 61 15Google Scholar

    [8]

    DeMann A, Mueller S, Field S B 2016 Cryogenics 73 60Google Scholar

    [9]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [10]

    Bluefors and Cryomech 1 K systems products https://bluefors.com/products/1k-systems/

    [11]

    Oxford Instruments 1 K cryostats products https://nanoscience.oxinst.com/dry-systems/products/teslatronpt

    [12]

    Quantum Design 1 K measurement systems products https://www.qd-china.com/zh/pro/detail3/1/1912091422155/1909260926498

    [13]

    Wang L G, Qu Q X, Chen H, Dai N N, Zhao W Y, Jia P, Xu D, Li L F 2025 Cryogenics 145 103992Google Scholar

    [14]

    Pengli 1 K cryostats products https://isite.baidu.com/site/wjzru1zo/96a2066c-8800-4095-9ec4-a0489538571f?ch=48&wid=6dfbf96df3554e288101d75dc1ec8912_0_0&uniqId=c4db65aa10714a8697008f3c034cf058

    [15]

    ZL Cryogenic 1 K cryostats products http://zlcryogenic.com/display/141459.html

    [16]

    Radebaugh R. 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [17]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [18]

    Wang C 2016 Cryocoolers 19 299

    [19]

    Wang C, Hanrahan T, Johnson M 2018 Cryogenics 95 64Google Scholar

    [20]

    Wang C, Lichtenwalter B, Friebel A, Tang H X 2014 Cryogenics 64 5Google Scholar

    [21]

    Qu Q X, Wang L G, Chen H, Dai N N, Jia P, Xu D, Li L F 2024 Cryogenics 138 103797Google Scholar

    [22]

    Wu S G, Zhao B J, Tan J, Zhao Y J, Zhai Y J, Xue R J, Tan H, Ma D, Wu D R, Dang H Z 2023 Energy 277 127691Google Scholar

    [23]

    Shen Y W, Liu D L, Chen S F, Zhao Q Y, Liu L, Gan Z H, Qiu M 2020 Appl. Therm. Eng. 166 114667Google Scholar

    [24]

    Li X, Xu D, Wang W, Lin P, Liu H M, Nishimura A, Shen F Z, Li L F 2019 Cryogenics 102 50Google Scholar

    [25]

    Uhlig K 2002 Cryogenics 42 73Google Scholar

    [26]

    Wang C 2001 Cryogenics 41 491Google Scholar

    [27]

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese) [刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏 2023 72 190701]Google Scholar

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese)Google Scholar

  • 图 1  工质氦4压焓图

    Figure 1.  The pressure-enthalpy diagram of the helium-4.

    图 2  基于脉管制冷机预冷的1 K低温系统结构示意图

    Figure 2.  Schematic diagram of the 1 K cryogenic system pre-cooled by a pulse tube refrigerator.

    图 3  实验系统实物照片

    Figure 3.  Photograph of the experimental system.

    图 4  1 K气路系统流程示意图

    Figure 4.  Schematic diagram of the 1 K gas circuit system.

    图 5  4 K脉管制冷机典型制冷性能 (a)降温曲线, (b)制冷量

    Figure 5.  Typical cooling performance of the developed 4 K pulse tube refrigerator: (a) Cooling curve; (b) cooling capacity.

    图 6  1 K低温系统典型制冷性能 (a)降温曲线; (b)制冷量

    Figure 6.  Typical cooling performance of the 1 K cryogenic system: (a) Cooling curve; (b) cooling capacity.

    图 7  制冷量和工质流量与制冷温度关系变化曲线

    Figure 7.  The relationship curve between cooling capacity, working flow and cooling temperature.

    表 1  自研脉管制冷机与国外产品比较

    Table 1.  Comparison between the developed prototype and foreign 4 K GM-type PTRs.

    时间 最低温度 一级制冷量 二级制冷量 功耗 备注
    Cryomech PT415-RM <60 min <2.8 K 40 W @ 45 K 1.35 W @ 4.2 K 9.2 kW 阀分离
    住友RP-182B2S <60 min <2.8 K 36 W @ 48 K 1.5 W @ 4.2 K 11.8 kW 阀分离
    本文 <40 min 2.14 K 45 W @ 45 K 1.5 W @ 4.2 K 14 kW 阀分离
    DownLoad: CSV
    Baidu
  • [1]

    Zhao Z Y, Wang C 2019 Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press) p233

    [2]

    李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊 2023 72 190702Google Scholar

    Li K, Wang Y N, Liu P, Yu F Q, Dai W, Shen J 2023 Acta Phys. Sin. 72 190702Google Scholar

    [3]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [4]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [5]

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese) [郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛 2024 73 230701]Google Scholar

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese)Google Scholar

    [6]

    Guan X, Fan J, Bian Y B, Cheng Z G, Ji Z Q 2024 Chin. Phys. B 33 070701Google Scholar

    [7]

    Jahromi A E, Miller F K 2014 Cryogenics 61 15Google Scholar

    [8]

    DeMann A, Mueller S, Field S B 2016 Cryogenics 73 60Google Scholar

    [9]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [10]

    Bluefors and Cryomech 1 K systems products https://bluefors.com/products/1k-systems/

    [11]

    Oxford Instruments 1 K cryostats products https://nanoscience.oxinst.com/dry-systems/products/teslatronpt

    [12]

    Quantum Design 1 K measurement systems products https://www.qd-china.com/zh/pro/detail3/1/1912091422155/1909260926498

    [13]

    Wang L G, Qu Q X, Chen H, Dai N N, Zhao W Y, Jia P, Xu D, Li L F 2025 Cryogenics 145 103992Google Scholar

    [14]

    Pengli 1 K cryostats products https://isite.baidu.com/site/wjzru1zo/96a2066c-8800-4095-9ec4-a0489538571f?ch=48&wid=6dfbf96df3554e288101d75dc1ec8912_0_0&uniqId=c4db65aa10714a8697008f3c034cf058

    [15]

    ZL Cryogenic 1 K cryostats products http://zlcryogenic.com/display/141459.html

    [16]

    Radebaugh R. 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [17]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [18]

    Wang C 2016 Cryocoolers 19 299

    [19]

    Wang C, Hanrahan T, Johnson M 2018 Cryogenics 95 64Google Scholar

    [20]

    Wang C, Lichtenwalter B, Friebel A, Tang H X 2014 Cryogenics 64 5Google Scholar

    [21]

    Qu Q X, Wang L G, Chen H, Dai N N, Jia P, Xu D, Li L F 2024 Cryogenics 138 103797Google Scholar

    [22]

    Wu S G, Zhao B J, Tan J, Zhao Y J, Zhai Y J, Xue R J, Tan H, Ma D, Wu D R, Dang H Z 2023 Energy 277 127691Google Scholar

    [23]

    Shen Y W, Liu D L, Chen S F, Zhao Q Y, Liu L, Gan Z H, Qiu M 2020 Appl. Therm. Eng. 166 114667Google Scholar

    [24]

    Li X, Xu D, Wang W, Lin P, Liu H M, Nishimura A, Shen F Z, Li L F 2019 Cryogenics 102 50Google Scholar

    [25]

    Uhlig K 2002 Cryogenics 42 73Google Scholar

    [26]

    Wang C 2001 Cryogenics 41 491Google Scholar

    [27]

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese) [刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏 2023 72 190701]Google Scholar

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese)Google Scholar

  • [1] Li Rui, Shen Jun, Zhang Zhi-Peng, Li Zhen-Xing, Mo Zhao-Jun, Gao Xin-Qiang, Hai Peng, Fu Qi. Experimental study of compact room temperature magnetic cooling system based on different flow time ratios. Acta Physica Sinica, 2024, 73(3): 037501. doi: 10.7498/aps.73.20231066
    [2] Zheng Mao-Wen, Guo Hao-Wen, Wei Ling-Jiao, Pan Zi-Jie, Zou Jia-Run, Li Rui-Xin, Zhao Mi-Guang, Chen Hou-Lei, Liang Jing-Tao. Dilution refrigeration technology. Acta Physica Sinica, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [3] Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun. Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator. Acta Physica Sinica, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [4] Liu Xu-Ming, Pan Chang-Zhao, Zhang Yu, Liao Yi, Guo Wei-Jie, Yu Da-Peng. 4 K GM-type pulse tube cryocooler with large cooling capacity. Acta Physica Sinica, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [5] Zu Hong-Ye, Cheng Wei-Jun, Wang Ya-Nan, Wang Xiao-Tao, Li Ke, Dai Wei. Experimental analysis of condensation-pump dilution refrigerators. Acta Physica Sinica, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [6] Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou. Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [7] Liu Xing, Xu Shuai, Gao Jin-Zhu, He Ji-Zhou. Four-terminal hybrid driven refrigerator based on three coupled quantum dots. Acta Physica Sinica, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [8] Chen Hao, Wang Cun-Hai, Cheng Zi-Ming, Wei Lin-Yang, Wang Fu-Qiang, Zhang Xin-Xin. Performance analysis of thermoelectric system based on radiative cooling and greenhouse effects. Acta Physica Sinica, 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [9] Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan. Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region. Acta Physica Sinica, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [10] Fu Bai-Shan, Liao Yi, Zhou Jun. Dilution refrigerator and its heat transfer problems. Acta Physica Sinica, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [11] Liu Guo-Qiang, Ke Ya-Jiao, Zhang Kong-Bin, He Xiong, Luo Feng, He Bin, Sun Zhi-Gang. Research progress of physical model of full-solid-state magnetic refrigeration system. Acta Physica Sinica, 2019, 68(21): 217501. doi: 10.7498/aps.68.20191139
    [12] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [13] Zhang Rong, Lu Can-Can, Li Qian-Wen, Liu Wei, Bai Long. Performance analysis of a refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one within linear irreversible thermodynamics. Acta Physica Sinica, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [14] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [15] Chang Song-Tao, Sun Zhi-Yuan, Zhang Yao-Yu, Zhu Wei. Internal stray radiation measurement for cooled infrared imaging systems. Acta Physica Sinica, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [16] He Xian, He Ji-Zhou, Xiao Yu-Ling. A four-level quantum refrigeration cycle. Acta Physica Sinica, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [17] Luo Xiao-Guang, He Ji-Zhou. Rocked ratchet thermoelectric tunneling refrigerator. Acta Physica Sinica, 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
    [18] He Ji-Zhou, Miao Gui-Ling, He Bing-Xiang. Influence of nanowire heterostructure on performanceof electron refrigerator. Acta Physica Sinica, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [19] He Bing-Xiang, He Ji-Zhou. Thermoelectric refrigerator of a double-barrier InAs/InP nanowire heterostructure. Acta Physica Sinica, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [20] Han Peng, Jin Kui-Juan, Zhou Yue-Liang, Zhou Qing-Li, Wang Xu, Zhao Song-Qing, Ma Zhong-Shui. Opto-thermionic refrigeration of semiconductor heterostructure. Acta Physica Sinica, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
Metrics
  • Abstract views:  398
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2025
  • Accepted Date:  15 March 2025
  • Available Online:  01 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map