Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor

Xu Shuai Yang Yun-Yun Liu Xing He Ji-Zhou

Citation:

Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor

Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou
PDF
HTML
Get Citation
  • In this paper, the model of a three-terminal nanowire refrigerator is established based on one-dimensional (1D) ballistic conductor. It is composed of an intermediate cavity and left/right electron reservoir in which the intermediate cavity and left/right electron reservoir are connected by 1D nanowire conductor. The expression for the charge current and that for the energy current flowing from two electron reservoirs are derived by using Landauer formula and basic thermodynamic laws. Then, the working region of the refrigerator is obtained, its performance characteristics are analyzed, and its performance optimization is discussed. It is shown that the refrigerator under different parameters operates in different working regions. For each refrigeration region, there is an upper limit of temperature difference, and the refrigerator will be unable to refrigerate beyond the upper limit. The characteristic curve of the cooling rate changing with performance coefficient is a loop-shaped one, which provides an important index for us to evaluate the performance of the refrigerator. The energy level width of the nanowire can be reduced as much as possible, which will improve the performance of the refrigerator.
      Corresponding author: He Ji-Zhou, hjzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant No. 11875034)
    [1]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [2]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [3]

    Venkatasubramanian R, Siivola E, Colpittes T, O’Quinn B 2001 Nature 413 597Google Scholar

    [4]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [5]

    Boukai A I, Bunimovich J, Tahir-Kheli J, Yu J K, Goddard Iii W A, Heath J R 2008 Nature 451 168Google Scholar

    [6]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458Google Scholar

    [7]

    Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J, Foxon C T 1993 Europhys. Lett. 22 57Google Scholar

    [8]

    Molenkamp L, Staring A A M, Alphenaar B W, Van Houten H, Beenakker C W J 1994 Semicond. Sci. Technol. 9 903Google Scholar

    [9]

    Dzurak A S, Smith C G, Barnes C H W, Pepper M, Martín-Moreno L, Liang C T, Ritchie D A, Jones G A C 1997 Phys. Rev. B 55 R10197Google Scholar

    [10]

    Esposito M, Lindenberg K, Van den Broeck C 2009 Europhys. Lett. 85 60010Google Scholar

    [11]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. E 81 041106Google Scholar

    [12]

    Esposito M, Kumar N, Lindenberg K, Van den Broeck C 2012 Phys. Rev. E 85 031117Google Scholar

    [13]

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin. Phys. 51 030011

    [14]

    Su G Z, Zhang Y C, Cai L, Su S H, Chen J C 2015 Energy 90 1842Google Scholar

    [15]

    Su G Z, Liao T J, Chen L W, Chen J C 2016 Energy 101 421Google Scholar

    [16]

    Su G Z, Pan Y Z, Zhang Y C, Shih T M, Chen J C 2016 Energy 113 723Google Scholar

    [17]

    Peng W L, Liao T J, Zhang Y C, Su G Z, Lin G X, Chen J C 2017 Energy Convers. Manage. 143 391Google Scholar

    [18]

    Peng W L, Zhang Y C, Yang Z M, Chen J C 2018 Eur. Phys. J. Plus. 133 38Google Scholar

    [19]

    Peng W L, Ye Z L, Zhang X, Chen J C 2018 Energy Convers. Manage. 166 74Google Scholar

    [20]

    Edwards H L, Niu Q, De Lozanne A L 1993 Appl. Phys. Lett. 63 1815Google Scholar

    [21]

    Edwards H L, Niu Q, Georgakis G A, De Lozanne A L 1995 Phys. Rev. B 52 5714

    [22]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [23]

    Jiang J H, Entin-Wohlman O, Imry Y 2012 Phys. Rev. B 85 075412Google Scholar

    [24]

    Jiang J H 2014 J. Appl. Phys. 116 194303Google Scholar

    [25]

    Jiang J H, Imry Y 2018 Phys. Rev. B 97 125422Google Scholar

    [26]

    Jordan A N, Sothmann B, Sánchez R, Büttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [27]

    Qiu S S, Ding Z M, Chen L G, Meng F K, Sun F R 2019 The Euro. Phys. J. Plus. 134 273Google Scholar

    [28]

    Ding Z M, Chen L G, Ge Y L, Xie Z H 2019 Sci. China: Tech. Sci. 62 397Google Scholar

    [29]

    Li W, Yang Y Y, Fu J, He J Z 2020 ES. Energy Environment 7 40

    [30]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [31]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. B 101 022117

    [32]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [33]

    Fu J, Li W, Shi Z C, He J Z 2018 Chin. J. Phys. 56 895Google Scholar

    [34]

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin. Phys. 45 050502

    [35]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [36]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [37]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [38]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnology 10 854Google Scholar

    [39]

    Roche B, Roulleau P, Julien T, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [40]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [41]

    Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, Smith C G 2019 Phys. Rev. Lett. 123 117701Google Scholar

    [42]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar, Yang P 2008 Nature 451 163Google Scholar

    [43]

    Björk M T, Ohlsson B J, Sass T, Thelander C, Persson A I, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2020 Appl. Phys. Lett. 80 1058

    [44]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [45]

    Nakpathomkun N, Xu H Q, Linke H 2010 Phys. Rev. B 82 235428Google Scholar

  • 图 1  (a) 三端纳米线制冷机模型图; (b) 传输函数${\tau _i}\left( E \right)$作为能量${E_i}$的函数

    Figure 1.  (a) The schematic diagram of a three-terminal nanowire refrigerator; (b) transmission function ${\tau _i}\left( E \right)$ as a function of energy level ${E_i}$.

    图 2  (a) 在$\gamma \to 0$的情况下制冷机的工作区间; (b) 当γ取不同的值时对工作区间的影响

    Figure 2.  (a) The working region of the refrigerator in the case of $\gamma \to 0$; (b) the working regions at given different value γ

    图 3  $\gamma \to 0$时(a)制冷率和(b)制冷系数随着能级位置变化的三维图; (c)—(f)分别是$\gamma = 0.5$$\gamma = 1$对应的制冷率和制冷系数的三维图

    Figure 3.  Three-dimensional graphs for (a) the cooling rate and (b) the coefficient of performance varying with the energy level positions under $\gamma \to 0$; (c)–(f) are the three-dimensional graphs for the cooling rate and the coefficient of performance at given $\gamma = 0.5$ and $\gamma = 1$, respectively.

    图 4  (a) 制冷率关于电压的函数图像; (b) 制冷系数关于电压的函数图像; (c) 制冷机的${\dot{{Q}}_{\text{C}}}{-}\varphi$特征图

    Figure 4.  (a) The cooling rate as a function of voltage; (b) the coefficient of performance as a function of voltage; (c) the characteristic curves of ${\dot{{Q}}_{\text{C}}}{-}\varphi$ at given different value γ.

    图 5  (a) 优化的制冷率随电压变化的图像; (b) 相应制冷系数随电压变化的图像; (c) 最优能级位置随电压变化的图像

    Figure 5.  (a) The curves of the optimized cooling rate as a function of voltage; (b) the curves of the corresponding coefficient of performance as a function of voltage; (c) the curves of the optimal energy level position as a function of voltage.

    图 6  (a) 优化的制冷率随能级宽度变化的图像; (b) 相应的制冷系数随能级宽度变化的图像; (c) 最优能级位置随能级宽度变化的图像

    Figure 6.  (a) The curves of the optimized cooling rate as a function of the width of energy level; (b) the curves of the corresponding coefficient of performance as a function of the width of energy level; (c) the curves of the optimal position of energy level as a function of the width of energy level.

    图 7  (a) 最大制冷率随温差变化的图像; (b) 最大制冷率下的制冷系数和以卡诺制冷系数为单位的制冷系数随温差变化的图像

    Figure 7.  (a) The curves of the maximum cooling rate as a function of the temperature difference; (b) the curves of the coefficient of performance at the maximum cooling rate and the coefficient of performance in a unit of Carnot value as a function of the temperature difference.

    Baidu
  • [1]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [2]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [3]

    Venkatasubramanian R, Siivola E, Colpittes T, O’Quinn B 2001 Nature 413 597Google Scholar

    [4]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [5]

    Boukai A I, Bunimovich J, Tahir-Kheli J, Yu J K, Goddard Iii W A, Heath J R 2008 Nature 451 168Google Scholar

    [6]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458Google Scholar

    [7]

    Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J, Foxon C T 1993 Europhys. Lett. 22 57Google Scholar

    [8]

    Molenkamp L, Staring A A M, Alphenaar B W, Van Houten H, Beenakker C W J 1994 Semicond. Sci. Technol. 9 903Google Scholar

    [9]

    Dzurak A S, Smith C G, Barnes C H W, Pepper M, Martín-Moreno L, Liang C T, Ritchie D A, Jones G A C 1997 Phys. Rev. B 55 R10197Google Scholar

    [10]

    Esposito M, Lindenberg K, Van den Broeck C 2009 Europhys. Lett. 85 60010Google Scholar

    [11]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. E 81 041106Google Scholar

    [12]

    Esposito M, Kumar N, Lindenberg K, Van den Broeck C 2012 Phys. Rev. E 85 031117Google Scholar

    [13]

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin. Phys. 51 030011

    [14]

    Su G Z, Zhang Y C, Cai L, Su S H, Chen J C 2015 Energy 90 1842Google Scholar

    [15]

    Su G Z, Liao T J, Chen L W, Chen J C 2016 Energy 101 421Google Scholar

    [16]

    Su G Z, Pan Y Z, Zhang Y C, Shih T M, Chen J C 2016 Energy 113 723Google Scholar

    [17]

    Peng W L, Liao T J, Zhang Y C, Su G Z, Lin G X, Chen J C 2017 Energy Convers. Manage. 143 391Google Scholar

    [18]

    Peng W L, Zhang Y C, Yang Z M, Chen J C 2018 Eur. Phys. J. Plus. 133 38Google Scholar

    [19]

    Peng W L, Ye Z L, Zhang X, Chen J C 2018 Energy Convers. Manage. 166 74Google Scholar

    [20]

    Edwards H L, Niu Q, De Lozanne A L 1993 Appl. Phys. Lett. 63 1815Google Scholar

    [21]

    Edwards H L, Niu Q, Georgakis G A, De Lozanne A L 1995 Phys. Rev. B 52 5714

    [22]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [23]

    Jiang J H, Entin-Wohlman O, Imry Y 2012 Phys. Rev. B 85 075412Google Scholar

    [24]

    Jiang J H 2014 J. Appl. Phys. 116 194303Google Scholar

    [25]

    Jiang J H, Imry Y 2018 Phys. Rev. B 97 125422Google Scholar

    [26]

    Jordan A N, Sothmann B, Sánchez R, Büttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [27]

    Qiu S S, Ding Z M, Chen L G, Meng F K, Sun F R 2019 The Euro. Phys. J. Plus. 134 273Google Scholar

    [28]

    Ding Z M, Chen L G, Ge Y L, Xie Z H 2019 Sci. China: Tech. Sci. 62 397Google Scholar

    [29]

    Li W, Yang Y Y, Fu J, He J Z 2020 ES. Energy Environment 7 40

    [30]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [31]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. B 101 022117

    [32]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [33]

    Fu J, Li W, Shi Z C, He J Z 2018 Chin. J. Phys. 56 895Google Scholar

    [34]

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin. Phys. 45 050502

    [35]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [36]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [37]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [38]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnology 10 854Google Scholar

    [39]

    Roche B, Roulleau P, Julien T, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [40]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [41]

    Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, Smith C G 2019 Phys. Rev. Lett. 123 117701Google Scholar

    [42]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar, Yang P 2008 Nature 451 163Google Scholar

    [43]

    Björk M T, Ohlsson B J, Sass T, Thelander C, Persson A I, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2020 Appl. Phys. Lett. 80 1058

    [44]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [45]

    Nakpathomkun N, Xu H Q, Linke H 2010 Phys. Rev. B 82 235428Google Scholar

  • [1] Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui. Surface effects on buckling of nanowire electrode. Acta Physica Sinica, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [2] Liu Xing, Xu Shuai, Gao Jin-Zhu, He Ji-Zhou. Four-terminal hybrid driven refrigerator based on three coupled quantum dots. Acta Physica Sinica, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [3] Performance optimization of a three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211077
    [4] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [5] Zhang Rong, Lu Can-Can, Li Qian-Wen, Liu Wei, Bai Long. Performance analysis of a refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one within linear irreversible thermodynamics. Acta Physica Sinica, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [6] Gao Feng-Ju. Calculation of coherent X-ray diffraction from bent Cu nanowires. Acta Physica Sinica, 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [7] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [8] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [9] Zhou Guo-Rong, Teng Xin-Ying, Wang Yan, Geng Hao-Ran, Hur Bo-Young. Size effect on the freezing behavior of aluminum nanowires. Acta Physica Sinica, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [10] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [11] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] He Bing-Xiang, He Ji-Zhou. Thermoelectric refrigerator of a double-barrier InAs/InP nanowire heterostructure. Acta Physica Sinica, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [13] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] Xu Zhen-Hai, Yuan Lin, Shan De-Bin, Guo Bin. Atomistic simulation of yield mechanism of single crystal copper nanowires. Acta Physica Sinica, 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [15] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [16] Yang Jiong, Zhang Wen-Qing. Structural stability of Se and Te nanowires. Acta Physica Sinica, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [17] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [18] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [19] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  3586
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2021
  • Accepted Date:  18 September 2021
  • Available Online:  09 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map